8 resultados para Data Envelopment Analysis

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently there are an overwhelming number of scientific publications in Life Sciences, especially in Genetics and Biotechnology. This huge amount of information is structured in corporate Data Warehouses (DW) or in Biological Databases (e.g. UniProt, RCSB Protein Data Bank, CEREALAB or GenBank), whose main drawback is its cost of updating that makes it obsolete easily. However, these Databases are the main tool for enterprises when they want to update their internal information, for example when a plant breeder enterprise needs to enrich its genetic information (internal structured Database) with recently discovered genes related to specific phenotypic traits (external unstructured data) in order to choose the desired parentals for breeding programs. In this paper, we propose to complement the internal information with external data from the Web using Question Answering (QA) techniques. We go a step further by providing a complete framework for integrating unstructured and structured information by combining traditional Databases and DW architectures with QA systems. The great advantage of our framework is that decision makers can compare instantaneously internal data with external data from competitors, thereby allowing taking quick strategic decisions based on richer data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo de este trabajo consiste en estimar la eficiencia productiva y de escala con la que operan los intermediarios del sector minorista espaol de distribucin turstico. Adicionalmente, se pretende examinar los determinantes de la eficiencia en trminos de la integracin vertical, concentracin horizontal, tamao y resultados de las entidades. La metodologa aplicada se apoya en diversas tcnicas de medicin de eficiencia (paramtrica de naturaleza estocstica y no paramtrica del Anlisis Envolvente de Datos, DEA), as como en modelos tobit para conocer el impacto de los factores del mercado y de la empresa sobre los niveles de eficiencia. La aplicacin emprica realizada en una muestra de 50 agencias de viaje de nuestro pas evidencia, por un lado, unos elevados ndices de ineficiencia tcnica y de escala, destacando en el ltimo caso los rendimientos decrecientes; y por otro, que el tamao y el ROA son los factores determinante de la eficiencia de escala, mientras que la concentracin del mercado explica la eficiencia tcnica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo del trabajo consiste en analizar la eficiencia de las empresas que integran una marca colectiva en una industria productora de bienes de experiencia. El supuesto bsico es que la marca colectiva tiene un impacto positivo en la eficiencia de las empresas acogidas a la misma, el cual viene explicado porque la reputacin colectiva fomenta una inversin eficiente en calidad. Sin embargo, la marca colectiva tambin puede tener un efecto opuesto sobre los incentivos de una empresa a una inversin en calidad ya que dicha marca puede crear un incentivo a free ride. Nuestra propuesta defiende que la interaccin entre estos factores opuestos, reputacin colectiva y free ride, viene moderada por las caractersticas de la marca colectiva y de la propia empresa. La metodologa aplicada en el contraste de estas hiptesis se apoya en el Anlisis Envolvente de Datos para estimar la eficiencia, as como en modelos economtricos para explicar la eficiencia empresarial mediante caractersticas de la marca colectiva y de la empresa. Los resultados obtenidos en el mbito de las bodegas espaolas evidencian que las marcas colectivas tienen un impacto positivo sobre la eficiencia, el cual viene moderado por el tamao de la marca colectiva generando una relacin curvilnea en forma de U invertida. Adicionalmente, el volumen de produccin de la marca colectiva y el tamao de las bodegas ejercen un efecto moderador en el impacto del tamao de la marca colectiva sobre la eficiencia. En general, los resultados ponen de manifiesto la importancia de las marcas colectivas cuando se investigan industrias donde la calidad no es solamente sealizada por una marca tpica individual.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses the productivity growth of the SUMA tax offices located in Spain evolved between 2004 and 2006 by using Malmquist Index based on Data Envelopment Analysis (DEA) models. It goes a step forward by smoothed bootstrap procedure which improves the quality of the results by generalising the samples, so that the conclusions obtained from them can be applied in order to increase productivity levels. Additionally, the productivity effect is divided into two different components, efficiency and technological change, with the objective of helping to clarify the role played by either the managers or the level of technology in the final performance figures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates the technical efficiency of the learning-teaching process in higher education using a three-stage procedure that offers advances in comparison to previous studies and improves the quality of the results. First, it utilizes a multiple stage Data Envelopment Analysis (DEA) with contextual variables. Second, the levels of super efficiency are calculated in order to prioritize the efficiency units. And finally, through sensitivity analysis, the contribution of each key performance indicator (KPI) is established with respect to the efficiency levels without omission of variables. The analytical data was collected from a survey completed by 633 tourism students during the 2011/12, 2012/13 and 2013/14 academic course years. The results suggest that level of satisfaction with the course, diversity of materials and satisfaction with the teacher were the most important factors affecting teaching performance. Furthermore, the effect of the contextual variables was found to be significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to analyse the economic efficiency of members of protected designations of origin (PDO). For the first time we analyse the value of PDO labels from the point of view of economic efficiency. The central hypothesis is that a PDO has a positive impact on the economic efficiency of its member companies and that this is because a PDO label is a collective reputation indicator that foments efficient investment in quality in terms of member returns. The methodology applied to test this hypothesis is based on data envelopment analysis to estimate economic efficiency, and econometric models to explain company efficiency through both the PDO label, as an indicator of collective reputation, and the characteristics of the company. The results obtained in the experience goods of wine and cheese in Spain show that PDO labels have a positive impact on economic efficiency. Additionally, the age and size of the company have a positive effect while the wage level of the company has a different influence on efficiency depending on the sector considered. Overall, the results reveal the importance of PDOs in industries in which the signal of reputation is not only reliant on the individual brands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays, data mining is based on low-level specications of the employed techniques typically bounded to a specic analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Here, we propose a model-driven approach based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (via data-warehousing technology) and the analysis models for data mining (tailored to a specic platform). Thus, analysts can concentrate on the analysis problem via conceptual data-mining models instead of low-level programming tasks related to the underlying-platform technical details. These tasks are now entrusted to the model-transformations scaffolding.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data mining is one of the most important analysis techniques to automatically extract knowledge from large amount of data. Nowadays, data mining is based on low-level specifications of the employed techniques typically bounded to a specific analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Bearing in mind this situation, we propose a model-driven approach which is based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (that is deployed via data-warehousing technology) and the analysis models for data mining (tailored to a specific platform). Thus, analysts can concentrate on understanding the analysis problem via conceptual data-mining models instead of wasting efforts on low-level programming tasks related to the underlying-platform technical details. These time consuming tasks are now entrusted to the model-transformations scaffolding. The feasibility of our approach is shown by means of a hypothetical data-mining scenario where a time series analysis is required.