18 resultados para Daisy Grisolia
em Universidad de Alicante
Resumo:
Thermal degradation of PLA is a complex process since it comprises many simultaneous reactions. The use of analytical techniques, such as differential scanning calorimetry (DSC) and thermogravimetry (TGA), yields useful information but a more sensitive analytical technique would be necessary to identify and quantify the PLA degradation products. In this work the thermal degradation of PLA at high temperatures was studied by using a pyrolyzer coupled to a gas chromatograph with mass spectrometry detection (Py-GC/MS). Pyrolysis conditions (temperature and time) were optimized in order to obtain an adequate chromatographic separation of the compounds formed during heating. The best resolution of chromatographic peaks was obtained by pyrolyzing the material from room temperature to 600 °C during 0.5 s. These conditions allowed identifying and quantifying the major compounds produced during the PLA thermal degradation in inert atmosphere. The strategy followed to select these operation parameters was by using sequential pyrolysis based on the adaptation of mathematical models. By application of this strategy it was demonstrated that PLA is degraded at high temperatures by following a non-linear behaviour. The application of logistic and Boltzmann models leads to good fittings to the experimental results, despite the Boltzmann model provided the best approach to calculate the time at which 50% of PLA was degraded. In conclusion, the Boltzmann method can be applied as a tool for simulating the PLA thermal degradation.
Resumo:
Composite materials made of porous SiO2 matrices filled with single-walled carbon nanotubes (SWCNTs) were deposited on electrodes by an electroassisted deposition method. The synthesized materials were characterized by several techniques, showing that porous silica prevents the aggregation of SWCNT on the electrodes, as could be observed by transmission electron microscopy and Raman spectroscopy. Different redox probes were employed to test their electrochemical sensing properties. The silica layer allows the permeation of the redox probes to the electrode surface and improves the electrochemical reversibility indicating an electrocatalytic effect by the incorporation of dispersed SWCNT into the silica films.
Resumo:
Poly(lactic acid) PLA, and poly(hydroxybutyrate) PHB, blends were processed as films and characterized for their use in food packaging. PLA was blended with PHB to enhance the crystallinity. Therefore, PHB addition strongly increased oxygen barrier while decreased the wettability. Two different environmentally-friendly plasticizers, poly(ethylene glycol) (PEG) and acetyl(tributyl citrate) (ATBC), were added to these blends to increase their processing performance, while improving their ductile properties. ATBC showed higher plasticizer efficiency than PEG directly related to the similarity solubility parameters between ATBC and both biopolymers. Moreover, ATBC was more efficiently retained to the polymer matrix during processing than PEG. PLA–PHB–ATBC blends were homogeneous and transparent blends that showed promising performance for the preparation of films by a ready industrial process technology for food packaging applications, showing slightly amber color, improved elongation at break, enhanced oxygen barrier and decreased wettability.
Resumo:
The synthesis of nitrogenated carbon nanotubes (N-CNTs) with up to 6.1 wt% N, via the use of pyridine as the nitrogen containing carbon precursor, can provide a facile route to significantly enhance the low intrinsic specific capacitance of carbon nanotubes. The nitrogen functionalities determine this, at least, five-fold increase of the specific capacitance.
Resumo:
The present communication studies the adsorption of aniline on platinum single crystal electrodes and the electrochemical properties of the first layers of polyaniline(PANI) grown on those platinum surfaces. The adsorption process was studied in aqueous acidic solution (0.1 M HClO4) and the electrochemical properties of thin films of PANI in both aqueous (1 M HClO4) and non-aqueous media (tetrabutyl ammonium hexafluorophosphate (TBAPF6) with additions of methanesulphonic acid in acetonitrile). First of all, it was found that the adsorption of aniline on platinum single crystal surfaces is a surface sensitive process, and even more important that the adsorption features found at low concentrations (5 × 10−5 M) can be directly correlated to the electrochemical properties of thin films of PANI in the very early stages of polymerization. The Pt(1 1 0) surface was found to be more suitable to obtain polymers with more reversible redox transitions when studied in aqueous media (1 M HClO4). This is in good agreement with the higher polymerization rates found on this surface compared to Pt(1 0 0) and Pt(1 1 1). Finally the differences in ionic exchange rate were greatly enhanced when they were studied in organic media. The AC 250 Hz response in the case of the thin films synthesized on Pt(1 1 0) is about twice greater than that obtained in the other basal planes using polymer layers with the same thickness.
Resumo:
The direct electron transfer between indium–tin oxide electrodes (ITO) and cytochrome c encapsulated in different sol–gel silica networks was studied. Cyt c@silica modified electrodes were synthesized by a two-step encapsulation method mixing a phosphate buffer solution with dissolved cytochrome c and a silica sol prepared by the alcohol-free sol–gel route. These modified electrodes were characterized by cyclic voltammetry, UV–vis spectroscopy, and in situ UV–vis spectroelectrochemistry. The electrochemical response of encapsulated protein is influenced by the terminal groups of the silica pores. Cyt c does not present electrochemical response in conventional silica (hydroxyl terminated) or phenyl terminated silica. Direct electron transfer to encapsulated cytochrome c and ITO electrodes only takes place when the protein is encapsulated in methyl modified silica networks.
Resumo:
The electroassisted encapsulation of Single-Walled Carbon Nanotubes was performed into silica matrices (SWCNT@SiO2). This material was used as the host for the potentiostatic growth of polyaniline (PANI) to yield a hybrid nanocomposite electrode, which was then characterized by both electrochemical and imaging techniques. The electrochemical properties of the SWCNT@SiO2-PANI composite material were tested against inorganic (Fe3+/Fe2+) and organic (dopamine) redox probes. It was observed that the electron transfer constants for the electrochemical reactions increased significantly when a dispersion of either SWCNT or PANI was carried out inside of the SiO2 matrix. However, the best results were obtained when polyaniline was grown through the pores of the SWCNT@SiO2 material. The enhanced reversibility of the redox reactions was ascribed to the synergy between the two electrocatalytic components (SWCNTs and PANI) of the composite material.
Resumo:
One of the main challenges in biological conservation has been to understand species distribution across space and time. Over the last decades, many diversity and conservation surveys have been conducted that have revealed that habitat heterogeneity acts as a major factor that determines saproxylic assemblages. However, temporal dynamics have been poorly studied, especially in Mediterranean forests. We analyzed saproxylic beetle distribution at inter and intra-annual scales in a “dehesa” ecosystem, which is a traditional Iberian agrosilvopastoral ecosystem that is characterized by the presence of old and scattered trees that dominate the landscape. Significant differences in effective numbers of families/species and species richness were found at the inter-annual scale, but this was not the case for composition. Temperature and relative humidity did not explain these changes which were mainly due to the presence of rare species. At the intra-annual scale, significant differences in the effective numbers of families/species, species richness and composition between seasons were found, and diversity partitioning revealed that season contributed significantly to gamma-diversity. Saproxylic beetle assemblages exhibited a marked seasonality in richness but not in abundance, with two peaks of activity, the highest between May and June, and the second between September and October. This pattern is mainly driven by the seasonality of the climate in the Mediterranean region, which influences ecosystem dynamics and imposes a marked seasonality on insect assemblages. An extended sampling period over different seasons allowed an overview of saproxylic dynamics, and revealed which families/species were restricted to particular seasons. Recognizing that seasons act as a driver in modelling saproxylic beetle assemblages might be a valuable tool in monitoring and for conservation strategies in Mediterranean forests.
Resumo:
The “dehesa” is a traditional Iberian agrosilvopastoral ecosystem characterized by the presence of old scattered trees that are considered as “keystone-structures”, which favor the presence of a wide range of biodiversity. We show the high diversity of saproxylic beetles and syrphids (Diptera) in this ecosystem, including red-listed species. We analyzed whether saproxylic species distribution in the “dehesa” was affected by tree density per hectare, dominant tree species or vegetation coverage. Species diversity did not correlate with tree density; however, it was affected by tree species and shrub coverage but in a different way for each taxon. The highest beetle diversity was linked to Quercus pyrenaica, the most managed tree species, with eight indicator species. In contrast, Q. rotundifolia hosted more species of saproxylic syrphids. Regarding vegetation coverage, shrub coverage was the only variable that affected insect richness, again in a different way for both taxa. In contrast, beetle species composition was only affected by dominant tree species whereas syrphid species composition was not affected by tree species or shrub coverage. We concluded that the high diversity of saproxylic insects in the “dehesa” is related to its long history of agrosilvopastoral management, which has generated landscape heterogeneity and preserved old mature trees. However, the richness and composition of different taxa of insects respond in different ways to tree species and vegetation coverage. Consequently, conservation strategies should try to maintain traditional management, and different saproxylic taxa should be used to monitor the effect of management on saproxylic diversity.
Resumo:
Tree hollows offer an ideal niche for saproxylic insects in mature Mediterranean forests, where Diptera and Coleoptera are the richest groups. Co-occurrence is frequently observed among many species of both groups in these microhabitats, and some of these species have been considered to facilitate the presence of other species by acting as ecosystem engineers. One of the systems that is found in Mediterranean tree hollows is formed by cetonid (Coleoptera: Cetoniidae) and syrphid (Diptera: Syrphidae) larvae. Here, cetonid larvae feed on wood and litter and produce a substrate that is easier to decompose. To assess the possible role of these larvae as facilitating agents for the saproxylic guild, we studied whether the presence of saprophagous Syrphidae inside tree hollows is associated with the activity of cetonid larvae. Furthermore, in laboratory conditions, we tested whether cetonid larvae activity can improve the development and fitness of the saprophagous syrphid species. Our results show that “cetonid activity” was the variable that best explained the presence of saprophagous syrphid species in natural conditions. Myathropa florea (L., 1758) was one of the species most influenced by this activity. The laboratory experiment gave similar results, demonstrating that an enriched substrate with Cetonia aurataeformis Curti, 1913 larval feces improves syrphid larval growth rate and fitness of adults (measured as longer wing length) of M. florea.
Resumo:
The “dehesa” (grassland with scattered oak trees) is a typical Mediterranean ecosystem from west Iberian Peninsula that has resulted from the transformation of the forest by clearing and brushwood removing and the landscape is maintained mainly bulls and/or Iberian pigs. This ecosystem is characterized by the presence of old scattered trees that are considered as “keystone-structures”, which favor the presence of a wide range of biodiversity, especially those species that are wood-dependent (saproxylic insects). Saproxylics are a diversified group involved in the recycling process of nutrients in forest, and thus they are considered as a bioindicator group of the quality and conservation status of habitats, including a wide number of species under some categories of threat according the IUCN criteria. It is widely recognized the importance of studying the main factors that determine the structure and distribution of species assemblages at both spatial and temporal scales, nevertheless, the saproxylic assemblages has been poorly studied from the temporal dimension. With this study we provide knowledge about the effect of the “dehesa” heterogeneity, species seasonality and distribution on this habitat and we highlight the importance of the maintaining of traditional practices as a tool for saproxylic insect diversity and conservation.
Resumo:
Esta investigación fue financiada en parte por el Ministerio de Ciencia e Innovación (CGL2011-23658), Ministerio de Economía y Competitividad (CGL2012-31669) y Generalitat Valenciana (proyectos PROMETEO/2013/03412 y ACOMP/2014/140). A. R. H. agradece la beca predoctoral del programa Santiago Grisolía de la Generalitat Valenciana (GRISOLIA/2010/080).
Resumo:
Se aporta la relación de especies de coleópteros y sírfidos saproxílicos que habitan en ecosistemas de dehesa del oeste ibérico. Se ha estudiado la Reserva Biológica de Campanarios de Azaba, provincia de Salamanca, designada en 2013 como primera Reserva Entomológica de España por la Asociación española de Entomología. Durante los 19 meses de muestreo se registraron 9.603 ejemplares de coleópteros saproxílicos pertenecientes a 157 especies (40 familias) y 477 ejemplares de sírfidos saproxílicos pertenecientes a 18 especies. Para la recolección del material se utilizaron trampas de emergencia y trampas de ventana. Entre los insectos capturados hay diez especies amenazadas, ya sea a nivel europeo o de España, que, a la vista de los resultados, mantienen poblaciones abundantes en este ecosistema de dehesa del oeste ibérico.
Resumo:
The interfacial properties of Pt(111) single crystal electrodes have been investigated in the pH range 3 < pH < 5 in order to obtain information about the acidity of electrosorbed water. Proper experimental conditions are defined to avoid local pH changes while maintaining the absence of specifically adsorbed anions and preserving the cleanliness of the solution. For this purpose, buffer solutions resulting from mixtures of NaF and HClO4 are used. Total charge curves are obtained at different pHs from the integration of the voltammetric currents in combination with CO charge displacement experiments. Analysis of the composition of the interphase as a function of the pH provides information for the understanding of the notion of interfacial pH.
Resumo:
Functionalized carbon nanotubes (CNTs) using three aminobenzene acids with different functional groups (carboxylic, sulphonic, phosphonic) in para position have been synthesized through potentiodynamic treatment in acid media under oxidative conditions. A noticeable increase in the capacitance for the functionalized carbon nanotubes mainly due to redox processes points out the formation of an electroactive polymer thin film on the CNTs surface along with covalently bonded functionalities. The CNTs functionalized using aminobenzoic acid rendered the highest capacitance values and surface nitrogen content, while the presence of sulfur and/or phosphorus groups in the aminobenzene structure yielded a lower functionalization degree. The oxygen reduction reaction (ORR) activity of the functionalized samples was similar to that of the parent CNTs, independently of the functional group present in the aminobenzene acid. Interestingly, a heat treatment in N2 atmosphere with a very low O2 concentration (3125 ppm) at 800 °C of the CNTs functionalized with aminobenzoic acid produced a material with high amounts of surface oxygen and nitrogen groups (12 and 4% at., respectively), that seem to modulate the electron-donor properties of the resulting material. The onset potential and limiting current for ORR was enhanced for this material. These are promising results that validates the use of electrochemistry for the synthesis of novel N-doped electrocatalysts for ORR in combination with adequate heat treatments.