7 resultados para DISTRIBUTION RANGE
em Universidad de Alicante
Resumo:
Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, this division may occur throughout almost the entire year. Alternatively, cell division may cease during relatively cool and dry winters, only to resume in the same calendar year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR). A dendrochronological network of Pinus halepensis was used to determine the relationship of MR to ECE. The network consisted of 113 sites, 1,509 trees, 2,593 cores, and 225,428 tree rings throughout the distribution range of the species. A total of 4,150 MR were identified. Binomial logistic regression analysis determined that MR frequency increased with increased cambial age. Spatial analysis indicated that the geographic areas of south-eastern Spain and northern Algeria contained the greatest frequency of MR. Dendroclimatic regression analysis indicated a non-linear relationship of MR to total monthly precipitation and mean temperature. MR are strongly associated with the combination of monthly mean temperature from previous October till current February and total precipitation from previous September till current May. They are likely to occur with total precipitation lower than 50 mm and temperatures higher than 5°C. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a complication for dendrochronology, MR formation is a fundamental response of trees to adverse environmental conditions. The demonstrated relationship of MR formation to ECE across this dendrochronological network in the Mediterranean basin shows the potential of MR analysis to reconstruct the history of past climatic extremes and to predict future forest dynamics in a changing climate.
Resumo:
Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.
Resumo:
The wide range of morphological variations in the “loxurina group” makes taxa identification difficult, and despite several reviews, serious taxonomical confusion remains. We make use of DNA data in conjunction with morphological appearance and available information on species distribution to delimit the boundaries of the “loxurina” group species previously established based on morphology. A fragment of 635 base pairs within the mtDNA gene cytochrome oxidase I (COI) was analysed for seven species of the “loxurina group”. Phylogenetic relationships among the included taxa were inferred using maximum parsimony and maximum likelihood methods. Penaincisalia sigsiga (Bálint et al), P. cillutincarae (Draudt), P. atymna (Hewitson) and P. loxurina (C. Felder & R. Felder) were easily delimited as the morphological, geographic and molecular data were congruent. Penaincisalia ludovica (Bálint & Wojtusiak) and P. loxurina astillero (Johnson) represent the same entity and constitute a sub-species of P. loxurina. However, incongruence among morphological, genetic, and geographic data is shown in P. chachapoya (Bálint & Wojtusiak) and P. tegulina (Bálint et al). Our results highlight that an integrative approach is needed to clarify the taxonomy of these neotropical taxa, but more genetic and geographical studies are still required.
Resumo:
Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.
Resumo:
We investigated surface waves guided by the boundary of a semi-infinite layered metal-dielectric nanostructure cut normally to the layers and a semi-infinite dielectric material. Using the Floquet-Bloch formalism, we found that Dyakonov-like surface waves with hybrid polarization can propagate in dramatically enhanced angular range compared to conventional birefringent materials. Our numerical simulations for an Ag-GaAs stack in contact with glass show a low to moderate influence of losses.
Resumo:
Gasoline coming from refinery fluid catalytic cracking (FCC) unit is a major contributor to the total commercial grade gasoline pool. The contents of the FCC gasoline are primarily paraffins, naphthenes, olefins, aromatics, and undesirables such as sulfur and sulfur containing compounds in low quantities. The proportions of these components in the FCC gasoline invariable determine its quality as well as the performance of the associated downstream units. The increasing demand for cleaner and lighter fuels significantly influences the need not only for novel processing technologies but also for alternative refinery and petrochemical feedstocks. Current and future clean gasoline requirements include increased isoparaffins contents, reduced olefin contents, reduced aromatics, reduced benzene, and reduced sulfur contents. The present study is aimed at investigating the effect of processing an unconventional refinery feedstock, composed of blend of vacuum gas oil (VGO) and low density polyethylene (LDPE) on FCC full range gasoline yields and compositional spectrum including its paraffins, isoparaffins, olefins, napthenes, and aromatics contents distribution within a range of operating variables of temperature (500–700 °C) and catalyst-feed oil ratio (CFR 5–10) using spent equilibrium FCC Y-zeolite based catalyst in a FCC pilot plant operated at the University of Alicante’s Research Institute of Chemical Process Engineering (RICPE). The coprocessing of the oil-polymer blend led to the production of gasoline with very similar yields and compositions as those obtained from the base oil, albeit, in some cases, the contribution of the feed polymer content as well as the processing variables on the gasoline compositional spectrum were appreciated. Carbon content analysis showed a higher fraction of the C9–C12 compounds at all catalyst rates employed and for both feedstocks. The gasoline’s paraffinicity, olefinicity, and degrees of branching of the paraffins and olefins were also affected in various degrees by the scale of operating severity. In the majority of the cases, the gasoline aromatics tended toward the decrease as the reactor temperature was increased. While the paraffins and iso-paraffins gasoline contents were relatively stable at around 5 % wt, the olefin contents on the other hand generally increased with increase in the FCC reactor temperature.
Resumo:
The moisture content and its spatial distribution has a great influence on the durability properties of concrete structures. Several non-destructive techniques have been used for the determination of the total water content, but moisture distribution is difficult to determine. In this paper impedance spectroscopy is used to study the water distribution in concrete samples with controlled and homogeneously distributed moisture contents. The technique is suitable for the determination of water distribution inside the sample, using the appropriate equivalent circuits. It is shown that using the selected drying procedures there is no change in the solid phase of the samples, although the technique can only be used for the qualitative study of variations in the solid phase when samples are too thick. The results of this work show that for a wide range of concrete percentages of saturation, from full to 18 % saturation, practically all the pores keep at least a thin layer of electrolyte covering their walls, since the capacitance measurement results are practically independent of the saturation degree.