2 resultados para Cyclic voltammetry of copper complexes

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper complexes containing inorganic ligands were loaded on a functionalized titania (F-TiO2) to obtain drug delivery systems. The as-received copper complexes and those released from titania were tested as toxic agents on different cancer cell lines. The sol–gel method was used for the synthesis and surface functionalization of the titania, as well as for loading the copper complexes, all in a single step. The resultant Cu/F-TiO2 materials were characterized by several techniques. An “in vitro” releasing test was developed using an aqueous medium. Different concentrations (15.6–1000 µg mL−1) of each copper complex, those loaded on titania (Cu/F-TiO2), functionalized titania, and cis-Pt as a reference material, were incubated on RG2, C6, U373, and B16 cancer cell lines for 24 h. The morphology of functionalized titania and the different Cu/F-TiO2 materials obtained consists of aggregated nanoparticles, which generate mesopores. The amorphous phase (in dominant proportion) and the anatase phase were the structures identified through the X-ray diffraction profiles. These results agree with high-resolution transmission electron microscopy. Theoretical studies indicate that the copper compounds were released by a Fickian diffusion mechanism. It was found that independently of the copper complex and also the cell line used, low concentrations of each copper compound were sufficient to kill almost 100 % of cancer cells. When the cancer cells were treated with increasing concentrations of the Cu/F-TiO2 materials the number of survival cells decreased. Both copper complexes alone as well as those loaded on TiO2 had higher toxic effect than cis-Pt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, the electrochemical properties of single-walled carbon nanotube buckypapers (BPs) were examined in terms of carbon nanotubes nature and preparation conditions. The performance of the different free-standing single wall carbon nanotube sheets was evaluated via cyclic voltammetry of several redox probes in aqueous electrolyte. Significant differences are observed in the electron transfer kinetics of the buckypaper-modified electrodes for both the outer- and inner-sphere redox systems. These differences can be ascribed to the nature of the carbon nanotubes (nanotube diameter, chirality and aspect ratio), surface oxidation degree and type of functionalities. In the case of dopamine, ferrocene/ferrocenium, and quinone/hydroquinone redox systems the voltammetric response should be thought as a complex contribution of different tips and sidewall domains which act as mediators for the electron transfer between the adsorbate species and the molecules in solution. In the other redox systems only nanotube ends are active sites for the electron transfer. It is also interesting to point out that a higher electroactive surface area not always lead to an improvement in the electron transfer rate of various redox systems. In addition, the current densities produced by the redox reactions studied here are high enough to ensure a proper electrochemical signal, which enables the use of BPs in sensing devices.