3 resultados para Cyanobacteria toxicity

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy metal contamination and drought are expected to increase in large areas worldwide. However, their combined effect on plant performance has been scantly analyzed. This study examines the effect of Zn supply at different water availabilities on morpho-physiological traits of Quercus suber L. in order to analyze the combined effects of both stresses. Seedlings were treated with four levels of zinc from 3 to 150 µM and exposed to low watering (LW) or high watering (HW) frequency in hydroponic culture, using a growth chamber. Under both watering regimes, Zn concentration in leaves and roots increased with Zn increment in nutrient solution. Nevertheless, at the highest Zn doses, Zn tissue concentrations were almost twice in HW than in LW seedlings. Functional traits as leaf photosynthetic rate and root hydraulic conductivity, and morphological traits as root length and root biomass decreased significantly in response to Zn supply. Auxin levels increased with Zn concentrations, suggesting the involvement of this phytohormone in the seedling response to this element. LW seedlings exposed to 150 µM Zn showed higher root length and root biomass than HW seedlings exposed to the same Zn dose. Our results suggest that low water availability could mitigate Zn toxicity by limiting internal accumulation. Morphological traits involved in the response to both stresses probably contributed to this response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To modulate the expression of genes involved in nitrogen assimilation, the cyanobacterial PII-interacting protein X (PipX) interacts with the global transcriptional regulator NtcA and the signal transduction protein PII, a protein found in all three domains of life as an integrator of signals of the nitrogen and carbon balance. PipX can form alternate complexes with NtcA and PII, and these interactions are stimulated and inhibited, respectively, by 2-oxoglutarate, providing a mechanistic link between PII signaling and NtcA-regulated gene expression. Here, we demonstrate that PipX is involved in a much wider interaction network. The effect of pipX alleles on transcript levels was studied by RNA sequencing of S. elongatus strains grown in the presence of either nitrate or ammonium, followed by multivariate analyses of relevant mutant/control comparisons. As a result of this process, 222 genes were classified into six coherent groups of differentially regulated genes, two of which, containing either NtcA-activated or NtcA-repressed genes, provided further insights into the function of NtcA–PipX complexes. The remaining four groups suggest the involvement of PipX in at least three NtcA-independent regulatory pathways. Our results pave the way to uncover new regulatory interactions and mechanisms in the control of gene expression in cyanobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries.