4 resultados para Current voltage curve

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic gap structure of the organic molecule N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine, also known as TPD, has been studied by means of a Scanning Tunneling Microscope (STM) and by Photoluminescence (PL) analysis. Hundreds of current-voltage characteristics measured at different spots of the sample show the typical behavior of a semiconductor. The analysis of the curves allows to construct a gap distribution histogram which reassembles the PL spectrum of this compound. This analysis demonstrates that STM can give relevant information, not only related to the expected value of a semiconductor gap but also on its distribution which affects its physical properties such as its PL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the effect of a structural nanoconstriction on the coherent transport properties of otherwise ideal zigzag-edged infinitely long graphene ribbons. The electronic structure is calculated with the standard one-orbital tight-binding model and the linear conductance is obtained using the Landauer formula. We find that, since the zero-bias current is carried in the bulk of the ribbon, this is very robust with respect to a variety of constriction geometries and edge defects. In contrast, the curve of zero-bias conductance versus gate voltage departs from the (2n+1)e2∕h staircase of the ideal case as soon as a single atom is removed from the sample. We also find that wedge-shaped constrictions can present nonconducting states fully localized in the constriction close to the Fermi energy. The interest of these localized states in regards to the formation of quantum dots in graphene is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Teachers are deeply concerned on how to be more effective in our task of teaching. We must organize the contents of our specific area providing them with a logical configuration, for which we must know the mental structure of the students that we have in the classroom. We must shape this mental structure, in a progressive manner, so that they can assimilate the contents that we are trying to transfer, to make the learning as meaningful as possible. In the generative learning model, the links before the stimulus delivered by the teacher and the information stored in the mind of the learner requires an important effort by the student, who should build new conceptual meanings. That effort, which is extremely necessary for a good learning, sometimes is the missing ingredient so that the teaching-learning process can be properly assimilated. In electrical circuits, which we know are perfectly controlled and described by Ohm's law and Kirchhoff's two rules, there are two concepts that correspond to the following physical quantities: voltage and electrical resistance. These two concepts are integrated and linked when the concept of current is presented. This concept is not subordinated to the previous ones, it has the same degree of inclusiveness and gives rise to substantial relations between the three concepts, materializing it into a law: The Ohm, which allows us to relate and to calculate any of the three physical magnitudes, two of them known. The alternate current, in which both the voltage and the current are reversed dozens of times per second, plays an important role in many aspects of our modern life, because it is universally used. Its main feature is that its maximum voltage is easily modifiable through the use of transformers, which greatly facilitates its transfer with very few losses. In this paper, we present a conceptual map so that it is used as a new tool to analyze in a logical manner the underlying structure in the alternate current circuits, with the objective of providing the students from Sciences and Engineering majors with another option to try, amongst all, to achieve a significant learning of this important part of physics.