9 resultados para Cross-lingual document retrieval
em Universidad de Alicante
Resumo:
This paper describes the first participation of IR-n system at Spoken Document Retrieval, focusing on the experiments we made before participation and showing the results we obtained. IR-n system is an Information Retrieval system based on passages and the recognition of sentences to define them. So, the main goal of this experiment is to adapt IR-n system to the spoken document structure by means of the utterance splitter and the overlapping passage technique allowing to match utterances and sentences.
Resumo:
El reciente crecimiento masivo de medios on-line y el incremento de los contenidos generados por los usuarios (por ejemplo, weblogs, Twitter, Facebook) plantea retos en el acceso e interpretación de datos multilingües de manera eficiente, rápida y asequible. El objetivo del proyecto TredMiner es desarrollar métodos innovadores, portables, de código abierto y que funcionen en tiempo real para generación de resúmenes y minería cross-lingüe de medios sociales a gran escala. Los resultados se están validando en tres casos de uso: soporte a la decisión en el dominio financiero (con analistas, empresarios, reguladores y economistas), monitorización y análisis político (con periodistas, economistas y políticos) y monitorización de medios sociales sobre salud con el fin de detectar información sobre efectos adversos a medicamentos.
Resumo:
Nowadays there is a big amount of biomedical literature which uses complex nouns and acronyms of biological entities thus complicating the task of retrieval specific information. The Genomics Track works for this goal and this paper describes the approach we used to take part of this track of TREC 2007. As this is the first time we participate in this track, we configurated a new system consisting of the following diferenciated parts: preprocessing, passage generation, document retrieval and passage (with the answer) extraction. We want to call special attention to the textual retrieval system used, which was developed by the University of Alicante. Adapting the resources for the propouse, our system has obtained precision results over the mean and median average of the 66 official runs for the Document, Aspect and Passage2 MAP; and in the case of Passage MAP we get nearly the median and mean value. We want to emphasize we have obtained these results without incorporating specific information about the domain of the track. For the future, we would like to further develop our system in this direction.
Resumo:
The present is marked by the availability of large volumes of heterogeneous data, whose management is extremely complex. While the treatment of factual data has been widely studied, the processing of subjective information still poses important challenges. This is especially true in tasks that combine Opinion Analysis with other challenges, such as the ones related to Question Answering. In this paper, we describe the different approaches we employed in the NTCIR 8 MOAT monolingual English (opinionatedness, relevance, answerness and polarity) and cross-lingual English-Chinese tasks, implemented in our OpAL system. The results obtained when using different settings of the system, as well as the error analysis performed after the competition, offered us some clear insights on the best combination of techniques, that balance between precision and recall. Contrary to our initial intuitions, we have also seen that the inclusion of specialized Natural Language Processing tools dealing with Temporality or Anaphora Resolution lowers the system performance, while the use of topic detection techniques using faceted search with Wikipedia and Latent Semantic Analysis leads to satisfactory system performance, both for the monolingual setting, as well as in a multilingual one.
Resumo:
En este trabajo presentamos unos resultados preliminares obtenidos mediante la aplicación de una nueva técnica de construcción de grafos semánticos a la tarea de desambiguación del sentido de las palabras en un entorno multilingüe. Gracias al uso de esta técnica no supervisada, inducimos los sentidos asociados a las traducciones de la palabra ambigua considerada en la lengua destino. Utilizamos las traducciones de las palabras del contexto de la palabra ambigua en la lengua origen para seleccionar el sentido más probable de la traducción. El sistema ha sido evaluado sobre la colección de datos de una tarea de desambiguación multilingüe que se propuso en la competición SemEval-2010, consiguiendo superar los resultados de todos los sistemas no supervisados que participaron en aquella tarea.
Resumo:
In the last few years, there has been a wide development in the research on textual information systems. The goal is to improve these systems in order to allow an easy localization, treatment and access to the information stored in digital format (Digital Databases, Documental Databases, and so on). There are lots of applications focused on information access (for example, Web-search systems like Google or Altavista). However, these applications have problems when they must access to cross-language information, or when they need to show information in a language different from the one of the query. This paper explores the use of syntactic-sematic patterns as a method to access to multilingual information, and revise, in the case of Information Retrieval, where it is possible and useful to employ patterns when it comes to the multilingual and interactive aspects. On the one hand, the multilingual aspects that are going to be studied are the ones related to the access to documents in different languages from the one of the query, as well as the automatic translation of the document, i.e. a machine translation system based on patterns. On the other hand, this paper is going to go deep into the interactive aspects related to the reformulation of a query based on the syntactic-semantic pattern of the request.
Resumo:
In this paper we explore the use of semantic classes in an existing information retrieval system in order to improve its results. Thus, we use two different ontologies of semantic classes (WordNet domain and Basic Level Concepts) in order to re-rank the retrieved documents and obtain better recall and precision. Finally, we implement a new method for weighting the expanded terms taking into account the weights of the original query terms and their relations in WordNet with respect to the new ones (which have demonstrated to improve the results). The evaluation of these approaches was carried out in the CLEF Robust-WSD Task, obtaining an improvement of 1.8% in GMAP for the semantic classes approach and 10% in MAP employing the WordNet term weighting approach.
Resumo:
Automatic Text Summarization has been shown to be useful for Natural Language Processing tasks such as Question Answering or Text Classification and other related fields of computer science such as Information Retrieval. Since Geographical Information Retrieval can be considered as an extension of the Information Retrieval field, the generation of summaries could be integrated into these systems by acting as an intermediate stage, with the purpose of reducing the document length. In this manner, the access time for information searching will be improved, while at the same time relevant documents will be also retrieved. Therefore, in this paper we propose the generation of two types of summaries (generic and geographical) applying several compression rates in order to evaluate their effectiveness in the Geographical Information Retrieval task. The evaluation has been carried out using GeoCLEF as evaluation framework and following an Information Retrieval perspective without considering the geo-reranking phase commonly used in these systems. Although single-document summarization has not performed well in general, the slight improvements obtained for some types of the proposed summaries, particularly for those based on geographical information, made us believe that the integration of Text Summarization with Geographical Information Retrieval may be beneficial, and consequently, the experimental set-up developed in this research work serves as a basis for further investigations in this field.
Resumo:
The phenological stages of onion fields in the first year of growth are estimated using polarimetric observables and single-polarization intensity channels. Experiments are undertaken on a time series of RADARSAT-2 C-band full-polarimetric synthetic aperture radar (SAR) images collected in 2009 over the Barrax region, Spain, where ground truth information about onion growth stages is provided by the European Space Agency (ESA)-funded agricultural bio/geophysical retrieval from frequent repeat pass SAR and optical imaging (AgriSAR) field campaign conducted in that area. The experimental results demonstrate that polarimetric entropy or copolar coherence when used jointly with the cross-polarized intensity allows unambiguously distinguishing three phenological intervals.