5 resultados para Cracking reflection

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we prensent an analysis of non-slanted reflection gratings by using exact solution of the second order differential equation derived from Maxwell equations, in terms of Mathieu functions. The results obtained by using this method will be compared to those obtained by using the well known Kogelnik's Coupled Wave Theory which predicts with great accuracy the response of the efficieny of the zero and first order for volume phase gratings, for both reflection and transmission gratings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gasoline coming from refinery fluid catalytic cracking (FCC) unit is a major contributor to the total commercial grade gasoline pool. The contents of the FCC gasoline are primarily paraffins, naphthenes, olefins, aromatics, and undesirables such as sulfur and sulfur containing compounds in low quantities. The proportions of these components in the FCC gasoline invariable determine its quality as well as the performance of the associated downstream units. The increasing demand for cleaner and lighter fuels significantly influences the need not only for novel processing technologies but also for alternative refinery and petrochemical feedstocks. Current and future clean gasoline requirements include increased isoparaffins contents, reduced olefin contents, reduced aromatics, reduced benzene, and reduced sulfur contents. The present study is aimed at investigating the effect of processing an unconventional refinery feedstock, composed of blend of vacuum gas oil (VGO) and low density polyethylene (LDPE) on FCC full range gasoline yields and compositional spectrum including its paraffins, isoparaffins, olefins, napthenes, and aromatics contents distribution within a range of operating variables of temperature (500–700 °C) and catalyst-feed oil ratio (CFR 5–10) using spent equilibrium FCC Y-zeolite based catalyst in a FCC pilot plant operated at the University of Alicante’s Research Institute of Chemical Process Engineering (RICPE). The coprocessing of the oil-polymer blend led to the production of gasoline with very similar yields and compositions as those obtained from the base oil, albeit, in some cases, the contribution of the feed polymer content as well as the processing variables on the gasoline compositional spectrum were appreciated. Carbon content analysis showed a higher fraction of the C9–C12 compounds at all catalyst rates employed and for both feedstocks. The gasoline’s paraffinicity, olefinicity, and degrees of branching of the paraffins and olefins were also affected in various degrees by the scale of operating severity. In the majority of the cases, the gasoline aromatics tended toward the decrease as the reactor temperature was increased. While the paraffins and iso-paraffins gasoline contents were relatively stable at around 5 % wt, the olefin contents on the other hand generally increased with increase in the FCC reactor temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a structural analysis of a masonry chimney built in the 1940s, which is currently being cataloged as local interest heritage. This structure has not served any industrial purpose for the last thirty years. The chimney is located in the town of Agost (Alicante - Spain) and directly exposed to the prevailing winds from the sea, as it is approximately 12 km away from the waterfront and there are not any significant barriers, which could protect the structure against the wind. There are longitudinal cracks and fissures all along the shaft because of the chimney’s geometrical characteristics, the effect of the masonry creep and especially the lack of maintenance. Moreover, there is also a permanent bending deformation in the upper 1/3 of the height due to the wind pressure. A numerical analysis for the static behavior against gravity and wind loads was performed using the structure’s current conditions after a detailed report of its geometry, its construction system and the cracking pattern. Afterwards, the dynamic behavior was studied, i.e. a seismic analysis using both response spectra and accelerograms in order to examine the structural stability. This work shows the pre-monitoring analysis before any experimental testing. Using the current results the future test conditions will be determined (e.g. number of sensors and monitoring point location, excitation systems, etc) prior to a possible structural reinforcement by applying composite material (fiber reinforced polymers).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, mixtures of vacuum gas oil and low density polyethylene, a major component of common industrial and consumer household plastics, were pyrolytically co-processed in a fluid catalytic cracking (FCC) riser reactor as a viable alternative for the energy and petrochemical revalorisation of plastic wastes into valuable petrochemical feedstocks and fuel within an existing industrial technology. Using equilibrium FCC catalyst, the oil–polymer blends were catalytically cracked at different processing conditions of temperatures between 773 K and 973 K and catalyst feed ratios of 5:1, 7:1 and 10:1. The influence of each of these processing parameters on the cracking gas and liquid yield patterns were studied and presented. Further analysed and presented are the different compositional distributions of the obtained liquids and gaseous products. The analysis of the results obtained revealed that with very little modifications to existing process superstructure, yields and compositional distributions of products from the fluid catalytic cracking of the oil–polymer blend in many cases were very similar to those of the processed oil feedstock, bringing to manifest the viability of the feedstock co-processing without significant detriments to FCC product yields and quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many approaches to mesoporous zeolites have been reported. The preparation of mesoporous zeolite Y, as the most widely used zeolite in catalysis, its properties, and its application in fluid catalytic cracking (FCC) and hydrocracking are reviewed. Finally, the scale-up and use of mesostrutured zeolite Y on an industrial scale are described, as the first commercial application of hierarchical zeolites.