7 resultados para Copper mines and mining

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subsidence is a natural hazard that affects wide areas in the world causing important economic costs annually. This phenomenon has occurred in the metropolitan area of Murcia City (SE Spain) as a result of groundwater overexploitation. In this work aquifer system subsidence is investigated using an advanced differential SAR interferometry remote sensing technique (A-DInSAR) called Stable Point Network (SPN). The SPN derived displacement results, mainly the velocity displacement maps and the time series of the displacement, reveal that in the period 2004–2008 the rate of subsidence in Murcia metropolitan area doubled with respect to the previous period from 1995 to 2005. The acceleration of the deformation phenomenon is explained by the drought period started in 2006. The comparison of the temporal evolution of the displacements measured with the extensometers and the SPN technique shows an average absolute error of 3.9±3.8 mm. Finally, results from a finite element model developed to simulate the recorded time history subsidence from known water table height changes compares well with the SPN displacement time series estimations. This result demonstrates the potential of A-DInSAR techniques to validate subsidence prediction models as an alternative to using instrumental ground based techniques for validation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a forensic analysis of buildings affected by mining subsidence, which is based on deformation data obtained by Differential Interferometry (DInSAR). The proposed test site is La Union village (Murcia, SE Spain) where subsidence was triggered in an industrial area due to the collapse of abandoned underground mining labours occurred in 1998. In the first part of this work the study area was introduced, describing the spatial and temporal evolution of ground subsidence, through the elaboration of a cracks map on the buildings located within the affected area. In the second part, the evolution of the most significant cracks found in the most damaged buildings was monitored using biaxial extensometric units and inclinometers. This article describes the work performed in the third part, where DInSAR processing of satellite radar data, available between 1998 and 2008, has permitted to determine the spatial and temporal evolution of the deformation of all the buildings of the study area in a period when no continuous in situ instrumental data is available. Additionally, the comparison of these results with the forensic data gathered in the 2005–2008 period, reveal that there is a coincidence between damaged buildings, buildings where extensometers register significant movements of cracks, and buildings deformation estimated from radar data. As a result, it has been demonstrated that the integration of DInSAR data into forensic analysis methodologies contributes to improve significantly the assessment of the damages of buildings affected by mining subsidence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CuO/ceria-zirconia catalysts have been prepared, deeply characterised (N2 adsorption–desorption isotherms at −196 °C, XRD, Raman spectroscopy, XPS, TEM and H2-TPR) and tested for NO oxidation to NO2 in TPR conditions, and for soot combustion at mild temperature (400 °C) in a NOx/O2 stream. The behaviour has been compared to that of a reference Pt/alumina commercial catalyst. The ceria-zirconia support was prepared by the co-precipitation method, and different amounts of copper (0.5, 1, 2, 4 and 6 wt%) were loaded by incipient wetness impregnation. The results revealed that copper is well-dispersed onto the ceria-zirconia support for the catalysts with low copper loading and CuO particles were only identified by XRD in samples with 4 and 6% of copper. A very low loading of copper increases significantly the activity for the NO oxidation to NO2 with regard to the ceria-zirconia support and an optimum was found for a 4% CuO/ceria-zirconia composition, showing a very high activity (54% at 348 °C). The soot combustion rate at 400 °C obtained with the 2% CuO/ceria-zirconia catalyst is slightly lower to that of 1% Pt/alumina in terms of mass of catalyst but higher in terms of price of catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two microporous hectorites were prepared by conventional and microwave heating, and a delaminated mesoporous hectorite by an ultrasound-assisted synthesis. These three hectorites were impregnated with copper. The characterization techniques used were XRD, N2 adsorption, TEM and H2 reduction after selective surface copper oxidation by N2O (to determine copper dispersion). The catalytic activity for soot combustion of the copper-free and the copper-containing hectorites was tested under a gas mixture of 500 ppm NOx/5% O2/N2 (and 5% O2/N2 in some cases), evaluating their stability through three consecutive soot combustion experiments. The delaminated hectorite showed the highest surface area (353 m2/g) allowing the highest dispersion of copper. This copper-containing catalyst was the most active for soot combustion among those prepared and tested in this study. We have also concluded that the Cu/hectorite-catalyzed soot combustion mechanism is based on the activation of the O2 molecule and not on the NO2-assisted soot combustion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface-enhanced raman scattering (SERS) spectra of self-assembled monolayers of 4-aminobenzenethiol (4-ABT) on copper (Cu) and silver (Ag) surfaces decorated with Cu and Ag nanostructures, respectively, have been obtained with lasers at 532, 632.8, 785, and 1064 nm. Density functional theory (DFT) has been used to obtain calculated vibrational frequencies of the 4-ABT and 4,4′-dimercaptoazobenzene (4,4′-DMAB) molecules adsorbed on model Cu surfaces. The features of the SERS spectra depend on the electrode potential and the type and power density of the laser. SERS spectra showed the formation of the 4,4′-DMAB on the nanostructured Cu surface independently of the laser employed. For the sake of comparison SERS spectra of a self-assembled monolayer of the 4-ABT on Ag surfaces decorated with Ag nanostructures have been also obtained with the same four lasers. When using the 532 and 632.8 nm lasers, the 4,4′-DMAB is formed on Cu surface at electrode potentials as low as −1.0 V (AgCl/Ag) showing a different behavior with respect to Ag (and others metals such as Au and Pt). On the other hand, the surface-enhanced infrared reflection absorption (SEIRA) spectra showed that in the absence of the laser excitation the 4,4′-DMAB is not produced from the adsorbed 4-ABT on nanostructured Cu in the whole range of potentials studied. These results point out the prevalence of the role of electron–hole pairs through surface plasmon activity to explain the obtained SERS spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper complexes containing inorganic ligands were loaded on a functionalized titania (F-TiO2) to obtain drug delivery systems. The as-received copper complexes and those released from titania were tested as toxic agents on different cancer cell lines. The sol–gel method was used for the synthesis and surface functionalization of the titania, as well as for loading the copper complexes, all in a single step. The resultant Cu/F-TiO2 materials were characterized by several techniques. An “in vitro” releasing test was developed using an aqueous medium. Different concentrations (15.6–1000 µg mL−1) of each copper complex, those loaded on titania (Cu/F-TiO2), functionalized titania, and cis-Pt as a reference material, were incubated on RG2, C6, U373, and B16 cancer cell lines for 24 h. The morphology of functionalized titania and the different Cu/F-TiO2 materials obtained consists of aggregated nanoparticles, which generate mesopores. The amorphous phase (in dominant proportion) and the anatase phase were the structures identified through the X-ray diffraction profiles. These results agree with high-resolution transmission electron microscopy. Theoretical studies indicate that the copper compounds were released by a Fickian diffusion mechanism. It was found that independently of the copper complex and also the cell line used, low concentrations of each copper compound were sufficient to kill almost 100 % of cancer cells. When the cancer cells were treated with increasing concentrations of the Cu/F-TiO2 materials the number of survival cells decreased. Both copper complexes alone as well as those loaded on TiO2 had higher toxic effect than cis-Pt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper-based catalysts supported on niobium-doped ceria have been prepared and tested in the preferential oxidation of CO in excess of H2 (PROX) and in total oxidation of toluene. Supports and catalysts have been characterized by several techniques: N2 adsorption, ICP-OES, XRF, XRD, Raman Spectroscopy, SEM, TEM, H2-TPR and XPS, and their catalytic performance has been measured in PROX, with an ideal gas mixture (CO, O2 and H2) with or without CO2 and H2O, and in total oxidation of toluene. The effects of the copper loading and the amount of niobium in the supports have been evaluated. Remarkably, the addition of niobia to the catalysts may improve the catalytic performance in total oxidation of toluene. It allows us to prepare cheaper catalysts (niobia it is far cheaper than ceria) with improved catalytic performance.