10 resultados para Copper catalysts

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two microporous hectorites were prepared by conventional and microwave heating, and a delaminated mesoporous hectorite by an ultrasound-assisted synthesis. These three hectorites were impregnated with copper. The characterization techniques used were XRD, N2 adsorption, TEM and H2 reduction after selective surface copper oxidation by N2O (to determine copper dispersion). The catalytic activity for soot combustion of the copper-free and the copper-containing hectorites was tested under a gas mixture of 500 ppm NOx/5% O2/N2 (and 5% O2/N2 in some cases), evaluating their stability through three consecutive soot combustion experiments. The delaminated hectorite showed the highest surface area (353 m2/g) allowing the highest dispersion of copper. This copper-containing catalyst was the most active for soot combustion among those prepared and tested in this study. We have also concluded that the Cu/hectorite-catalyzed soot combustion mechanism is based on the activation of the O2 molecule and not on the NO2-assisted soot combustion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

5% copper catalysts with Ce0.8M0.2Oδ supports (M = Zr, La, Ce, Pr or Nd) have been studied by rapid-scan operando DRIFTS for NOx Storage and Reduction (NSR) with high frequency (30 s) CO, H2 and 50%CO + 50%H2 micropulses. In the absence of reductant pulses, below 200–250 °C NOx was stored on the catalysts as nitrite and nitro groups, and above this temperature nitrates were the main species identified. The thermal stability of the NOx species stored on the catalysts depended on the acid/basic character of the dopant (M more acidic = NOx stored less stable ⇒ Zr4+ < none < Nd3+ < Pr3+ < La3+ ⇐ M more basic = NOx stored more stable). Catalysts regeneration was more efficient with H2 than with CO, and the CO + H2 mixture presented an intermediate behavior, but with smaller differences among the series of catalyst than observed using CO alone. N2 is the main NOx reduction product upon H2 regeneration. The highest NOx removal in NSR experiments performed at 400 °C with CO + H2 pulses was achieved with the catalyst with the most basic dopant (CuO/Ce0.8La0.2Oδ) while the poorest performing catalyst was that with the most acidic dopant (CuO/Ce0.8Zr0.2Oδ). The poor performance of CuO/Ce0.8Zr0.2Oδ in NSR experiments with CO pulses was attributed to its lower oxidation capacity compared to the other catalysts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Copper-based catalysts supported on niobium-doped ceria have been prepared and tested in the preferential oxidation of CO in excess of H2 (PROX) and in total oxidation of toluene. Supports and catalysts have been characterized by several techniques: N2 adsorption, ICP-OES, XRF, XRD, Raman Spectroscopy, SEM, TEM, H2-TPR and XPS, and their catalytic performance has been measured in PROX, with an ideal gas mixture (CO, O2 and H2) with or without CO2 and H2O, and in total oxidation of toluene. The effects of the copper loading and the amount of niobium in the supports have been evaluated. Remarkably, the addition of niobia to the catalysts may improve the catalytic performance in total oxidation of toluene. It allows us to prepare cheaper catalysts (niobia it is far cheaper than ceria) with improved catalytic performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conspectus: The challenges of the 21st century demand scientific and technological achievements that must be developed under sustainable and environmentally benign practices. In this vein, click chemistry and green chemistry walk hand in hand on a pathway of rigorous principles that help to safeguard the health of our planet against negligent and uncontrolled production. Copper-catalyzed azide–alkyne cycloaddition (CuAAC), the paradigm of a click reaction, is one of the most reliable and widespread synthetic transformations in organic chemistry, with multidisciplinary applications. Nanocatalysis is a green chemistry tool that can increase the inherent effectiveness of CuAAC because of the enhanced catalytic activity of nanostructured metals and their plausible reutilization capability as heterogeneous catalysts. This Account describes our contribution to click chemistry using unsupported and supported copper nanoparticles (CuNPs) as catalysts prepared by chemical reduction. Cu(0)NPs (3.0 ± 1.5 nm) in tetrahydrofuran were found to catalyze the reaction of terminal alkynes and organic azides in the presence of triethylamine at rates comparable to those achieved under microwave heating (10–30 min in most cases). Unfortunately, the CuNPs underwent dissolution under the reaction conditions and consequently could not be recovered. Compelling experimental evidence on the in situ generation of highly reactive copper(I) chloride and the participation of copper(I) acetylides was provided. The supported CuNPs were found to be more robust and efficient catalyst than the unsupported counterpart in the following terms: (a) the multicomponent variant of CuAAC could be applied; (b) the metal loading could be substantially decreased; (c) reactions could be conducted in neat water; and (d) the catalyst could be recovered easily and reutilized. In particular, the catalyst composed of oxidized CuNPs (Cu2O/CuO, 6.0 ± 2.0 nm) supported on carbon (CuNPs/C) was shown to be highly versatile and very effective in the multicomponent and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles in water from organic halides as azido precursors; magnetically recoverable CuNPs (3.0 ± 0.8 nm) supported on MagSilica could be alternatively used for the same purpose under similar conditions. Incorporation of an aromatic substituent at the 1-position of the triazole could be accomplished using the same CuNPs/C catalytic system starting from aryldiazonium salts or anilines as azido precursors. CuNPs/C in water also catalyzed the regioselective double-click synthesis of β-hydroxy-1,2,3-triazoles from epoxides. Furthermore, alkenes could be also used as azido precursors through a one-pot CuNPs/C-catalyzed azidosulfenylation–CuAAC sequential protocol, providing β-methylsulfanyl-1,2,3-triazoles in a stereo- and regioselective manner. In all types of reaction studied, CuNPs/C exhibited better behavior than some commercial copper catalysts with regard to the metal loading, reaction time, yield, and recyclability. Therefore, the results of this study also highlight the utility of nanosized copper in click chemistry compared with bulk copper sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CuO/ceria-zirconia catalysts have been prepared, deeply characterised (N2 adsorption–desorption isotherms at −196 °C, XRD, Raman spectroscopy, XPS, TEM and H2-TPR) and tested for NO oxidation to NO2 in TPR conditions, and for soot combustion at mild temperature (400 °C) in a NOx/O2 stream. The behaviour has been compared to that of a reference Pt/alumina commercial catalyst. The ceria-zirconia support was prepared by the co-precipitation method, and different amounts of copper (0.5, 1, 2, 4 and 6 wt%) were loaded by incipient wetness impregnation. The results revealed that copper is well-dispersed onto the ceria-zirconia support for the catalysts with low copper loading and CuO particles were only identified by XRD in samples with 4 and 6% of copper. A very low loading of copper increases significantly the activity for the NO oxidation to NO2 with regard to the ceria-zirconia support and an optimum was found for a 4% CuO/ceria-zirconia composition, showing a very high activity (54% at 348 °C). The soot combustion rate at 400 °C obtained with the 2% CuO/ceria-zirconia catalyst is slightly lower to that of 1% Pt/alumina in terms of mass of catalyst but higher in terms of price of catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this account, we describe the experience of our research group in the implementation of chiral coinage metal complexes into the efficient enantioselective 1,3-DC of azomethine ylides derived from α-amino acids and azlactones with different dipolarophiles. The corresponding chiral metallodipoles were generated in situ and next focused on the synthesis of highly substituted prolines. For this purpose, privileged ligands such as phosphoramidites and binap with silver(I), gold(I) and copper(II) salts are described. Depending from the ligand and mainly from the metal salt it can be possible to control the facial endo/exo-diasteroselectivity and the enantioselectivity of these types of processes. The synthetic processes are also supported by DFT calculations in order to elucidate the most plausible mechanism and the stereochemical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chiral complexes formed by privileged phosphoramidites derived from chiral binol and optically pure Davies’ amines, and copper(II) triflate, silver(I) triflate or silver(I) benzoate are excellent catalysts for the general 1,3-dipolar cycloaddition between nitroalkenes and azomethine ylides generated from α-amino acid derived imino esters. These three methods can be conducted at room temperature to afford the exo-cycloadducts (4,5-trans-2,5-cis-4-nitroprolinates) with high diastereoselectivity and high enantioselectivity. In general, the three procedures are complementary but silver catalysts are more versatile and less sensitive to sterically congested starting materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant effort is being devoted to the study of photoactive electrode materials for artificial photosynthesis devices. In this context, photocathodes promoting water reduction, based on earth-abundant elements and possessing stability under illumination, should be developed. Here, the photoelectrochemical behavior of CuCrO2 sol–gel thin film electrodes prepared on conducting glass is presented. The material, whose direct band gap is 3.15 eV, apparently presents a remarkable stability in both alkaline and acidic media. In 0.1 M HClO4 the material is significantly photoactive, with IPCE values at 350 nm and 0.36 V vs. RHE of over 6% for proton reduction and 23% for oxygen reduction. This response was obtained in the absence of charge extraction layers or co-catalysts, suggesting substantial room for optimization. The photocurrent onset potential is equal to 1.06 V vs. RHE in both alkaline and acidic media, which guarantees the combination of the material with different photoanodes such as Fe2O3 or WO3, potentially yielding bias-free water splitting devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

H– and Na–saponite supports have been prepared by several synthesis approaches. 5% Cu/saponite catalysts have been prepared and tested for soot combustion in a NOx + O2 + N2 gas flow and with soot and catalyst mixed in loose contact mode. XRD, FT-IR, N2 adsorption and TEM characterization results revealed that the use of either surfactant or microwaves during the synthesis led to delamination of the saponite support, yielding high surface area and small crystallite size materials. The degree of delamination affected further copper oxide dispersion and soot combustion capacity of the Cu/saponite catalysts. All Cu/saponite catalysts were active for soot combustion, and the NO2-assisted mechanism seemed to prevail. The best activity was achieved with copper oxide supported on a Na–saponite prepared at pH 13 and with surfactant. This best activity was attributed to the efficient copper oxide dispersion on the high surface area delaminated saponite (603 m2 g−1) and to the presence of Na. Copper oxide reduction in H2-TPR experiments occurred at lower temperature for the Na-containing catalysts than for the H-containing counterparts, and all Cu/Na–saponite catalysts were more active for soot combustion than the corresponding Cu/H–saponite catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to study the activities of ceria–zirconia and copper/ceria–zirconia catalysts, comparing with a commercial platinum/alumina catalyst, for soot combustion reaction under different gas atmospheres and loose contact mode (simulating diesel exhaust conditions), in order to analyse the kinetics and to deduce mechanistic implications. Activity tests were performed under isothermal and TPR conditions. The NO oxidation to NO2 was studied as well. It was checked that mass transfer limitations were not influencing the rate measurements. Global activation energies for the catalysed and non-catalysed soot combustion were calculated and properly discussed. The results reveal that ceria-based catalysts greatly enhance their activities under NOx/O2 between 425 °C and 450 °C, due to the “active oxygen”-assisted soot combustion. Remarkably, copper/ceria–zirconia shows a slightly higher soot combustion rate than the Pt-based catalyst (under NOx/O2, at 450 °C).