4 resultados para Continuous evaluation
em Universidad de Alicante
Resumo:
Comunicación presentada en CIDUI 2010, Congreso Internacional Docencia Universitaria e Innovación, Barcelona, 30 junio-2 julio 2010.
Resumo:
The adaptation of the Spanish University to the European Higher Education Area (EEES in Spanish) demands the integration of new tools and skills that would make the teaching- learning process easier. This adaptation involves a change in the evaluation methods, which goes from a system where the student was evaluated with a final exam, to a new system where we include a continuous evaluation in which the final exam may represent at most 50% in the vast majority of the Universities. Devising a new and fair continuous evaluation system is not an easy task to do. That would mean a student’s’ learning process follow-up by the teachers, and as a consequence an additional workload on existing staff resources. Traditionally, the continuous evaluation is associated with the daily work of the student and a collection of the different marks partly or entirely based on the work they do during the academic year. Now, small groups of students and an attendance control are important aspects to take into account in order to get an adequate assessment of the students. However, most of the university degrees have groups with more than 70 students, and the attendance control is a complicated task to perform, mostly because it consumes significant amounts of staff time. Another problem found is that the attendance control would encourage not-interested students to be present at class, which might cause some troubles to their classmates. After a two year experience in the development of a continuous assessment in Statistics subjects in Social Science degrees, we think that individual and periodical tasks are the best way to assess results. These tasks or examinations must be done in classroom during regular lessons, so we need an efficient system to put together different and personal questions in order to prevent students from cheating. In this paper we provide an efficient and effective way to elaborate random examination papers by using Sweave, a tool that generates data, graphics and statistical calculus from the software R and shows results in PDF documents created by Latex. In this way, we will be able to design an exam template which could be compiled in order to generate as many PDF documents as it is required, and at the same time, solutions are provided to easily correct them.
Resumo:
Aerobic Gymnastic is the ability to perform complex movements produced by the traditional aerobic exercises, in a continuous manner, with high intensity, perfectly integrated with soundtracks. This sport is performed in an aerobic/anaerobic lactacid condition and expects the execution of complex movements produced by the traditional aerobic exercises integrated with difficulty elements performed with a high technical level. An inaccuracy about this sport is related to the name itself “aerobic” because Aerobic Gymnastic does not use just the aerobic work during the competition, due to the fact that the exercises last among 1’30” and 1’45” at high rhythm. Agonistic Aerobics exploit the basic movements of amateur Aerobics and its coordination schemes, even though the agonistic Aerobics is so much intense than the amateur Aerobics to need a completely different mix of energetic mechanisms. Due to the complexity and the speed with which you perform the technical elements of Aerobic Gymnastic, the introduction of video analysis is essential for a qualitative and quantitative evaluation of athletes’ performance during the training. The performance analysis can allow the accurate analysis and explanation of the evolution and dynamics of a historical phenomenon and motor sports. The notational analysis is used by technicians to have an objective analysis of performance. Tactics, technique and individual movements can be analyzed to help coaches and athletes to re-evaluate their performance and gain advantage during the competition. The purpose of the following experimental work will be a starting point for analyzing the performance of the athletes in an objective way, not only during competitions, but especially during the phases of training. It is, therefore, advisable to introduce the video analysis and notational analysis for more quantitative and qualitative examination of technical movements. The goal is to lead to an improvement of the technique of the athlete and the teaching of the coach.
Resumo:
It is well known that sound absorption and sound transmission properties of open porous materials are highly dependent on their airflow resistance values. Low values of airflow resistance indicate little resistance for air streaming through the porous material and high values are a sign that most of the pores inside the material are closed. The laboratory procedures for measuring airflow resistance have been stan- dardized by several organizations, including ISO and ASTM for both alternate flow and continuous flow. However, practical implementation of these standardized methods could be both complex and expensive. In this work, two indirect alternative measurement procedures were compared against the alternate flow standardized technique. The techniques were tested using three families of eco-friendly sound absorbent materials: recycled polyurethane foams, coconut natural fibres, and recycled polyester fibres. It is found that the values of airflow resistance measured using both alternative methods are very similar. There is also a good correlation between the values obtained through alternative and standardized methods.