2 resultados para Continuous Utility Functions

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, a new methodology is presented to obtain representation models for a priori relation z = u(x1, x2, . . . ,xn) (1), with a known an experimental dataset zi; x1i ; x2i ; x3i ; . . . ; xni i=1;2;...;p· In this methodology, a potential energy is initially defined over each possible model for the relationship (1), what allows the application of the Lagrangian mechanics to the derived system. The solution of the Euler–Lagrange in this system allows obtaining the optimal solution according to the minimal action principle. The defined Lagrangian, corresponds to a continuous medium, where a n-dimensional finite elements model has been applied, so it is possible to get a solution for the problem solving a compatible and determined linear symmetric equation system. The computational implementation of the methodology has resulted in an improvement in the process of get representation models obtained and published previously by the authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an adaptive algorithm for clustering cumulative probability distribution functions (c.p.d.f.) of a continuous random variable, observed in different populations, into the minimum homogeneous clusters, making no parametric assumptions about the c.p.d.f.’s. The distance function for clustering c.p.d.f.’s that is proposed is based on the Kolmogorov–Smirnov two sample statistic. This test is able to detect differences in position, dispersion or shape of the c.p.d.f.’s. In our context, this statistic allows us to cluster the recorded data with a homogeneity criterion based on the whole distribution of each data set, and to decide whether it is necessary to add more clusters or not. In this sense, the proposed algorithm is adaptive as it automatically increases the number of clusters only as necessary; therefore, there is no need to fix in advance the number of clusters. The output of the algorithm are the common c.p.d.f. of all observed data in the cluster (the centroid) and, for each cluster, the Kolmogorov–Smirnov statistic between the centroid and the most distant c.p.d.f. The proposed algorithm has been used for a large data set of solar global irradiation spectra distributions. The results obtained enable to reduce all the information of more than 270,000 c.p.d.f.’s in only 6 different clusters that correspond to 6 different c.p.d.f.’s.