2 resultados para Computationally efficient
em Universidad de Alicante
Resumo:
Outliers are objects that show abnormal behavior with respect to their context or that have unexpected values in some of their parameters. In decision-making processes, information quality is of the utmost importance. In specific applications, an outlying data element may represent an important deviation in a production process or a damaged sensor. Therefore, the ability to detect these elements could make the difference between making a correct and an incorrect decision. This task is complicated by the large sizes of typical databases. Due to their importance in search processes in large volumes of data, researchers pay special attention to the development of efficient outlier detection techniques. This article presents a computationally efficient algorithm for the detection of outliers in large volumes of information. This proposal is based on an extension of the mathematical framework upon which the basic theory of detection of outliers, founded on Rough Set Theory, has been constructed. From this starting point, current problems are analyzed; a detection method is proposed, along with a computational algorithm that allows the performance of outlier detection tasks with an almost-linear complexity. To illustrate its viability, the results of the application of the outlier-detection algorithm to the concrete example of a large database are presented.
Resumo:
Automatic video segmentation plays a vital role in sports videos annotation. This paper presents a fully automatic and computationally efficient algorithm for analysis of sports videos. Various methods of automatic shot boundary detection have been proposed to perform automatic video segmentation. These investigations mainly concentrate on detecting fades and dissolves for fast processing of the entire video scene without providing any additional feedback on object relativity within the shots. The goal of the proposed method is to identify regions that perform certain activities in a scene. The model uses some low-level feature video processing algorithms to extract the shot boundaries from a video scene and to identify dominant colours within these boundaries. An object classification method is used for clustering the seed distributions of the dominant colours to homogeneous regions. Using a simple tracking method a classification of these regions to active or static is performed. The efficiency of the proposed framework is demonstrated over a standard video benchmark with numerous types of sport events and the experimental results show that our algorithm can be used with high accuracy for automatic annotation of active regions for sport videos.