4 resultados para Compressors.

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optimal integration between heat and work may significantly reduce the energy demand and consequently the process cost. This paper introduces a new mathematical model for the simultaneous synthesis of heat exchanger networks (HENs) in which the pressure levels of the process streams can be adjusted to enhance the heat integration. A superstructure is proposed for the HEN design with pressure recovery, developed via generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP) formulation. The process conditions (stream temperature and pressure) must be optimized. Furthermore, the approach allows for coupling of the turbines and compressors and selection of the turbines and valves to minimize the total annualized cost, which consists of the operational and capital expenses. The model is tested for its applicability in three case studies, including a cryogenic application. The results indicate that the energy integration reduces the quantity of utilities required, thus decreasing the overall cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optimal integration of work and its interaction with heat can represent large energy savings in industrial plants. This paper introduces a new optimization model for the simultaneous synthesis of work exchange networks (WENs), with heat integration for the optimal pressure recovery of process gaseous streams. The proposed approach for the WEN synthesis is analogous to the well-known problem of synthesis of heat exchanger networks (HENs). Thus, there is work exchange between high-pressure (HP) and low-pressure (LP) streams, achieved by pressure manipulation equipment running on common axes. The model allows the use of several units of single-shaft-turbine-compressor (SSTC), as well as stand-alone compressors, turbines and valves. Helper motors and generators are used to respond to any demand and excess of energy. Moreover, between the WEN stages the streams are sent to the HEN to promote thermal recovery, aiming to enhance the work integration. A multi-stage superstructure is proposed to represent the process. The WEN superstructure is optimized in a mixed-integer nonlinear programming (MINLP) formulation and solved with the GAMS software, with the goal of minimizing the total annualized cost. Three examples are conducted to verify the accuracy of the proposed method. In all case studies, the heat integration between WEN stages is essential to improve the pressure recovery, and to reduce the total costs involved in the process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces a new optimization model for the simultaneous synthesis of heat and work exchange networks. The work integration is performed in the work exchange network (WEN), while the heat integration is carried out in the heat exchanger network (HEN). In the WEN synthesis, streams at high-pressure (HP) and low-pressure (LP) are subjected to pressure manipulation stages, via turbines and compressors running on common shafts and stand-alone equipment. The model allows the use of several units of single-shaft-turbine-compressor (SSTC), as well as helper motors and generators to respond to any shortage and/or excess of energy, respectively, in the SSTC axes. The heat integration of the streams occurs in the HEN between each WEN stage. Thus, as the inlet and outlet streams temperatures in the HEN are dependent of the WEN design, they must be considered as optimization variables. The proposed multi-stage superstructure is formulated in mixed-integer nonlinear programming (MINLP), in order to minimize the total annualized cost composed by capital and operational expenses. A case study is conducted to verify the accuracy of the proposed approach. The results indicate that the heat integration between the WEN stages is essential to enhance the work integration, and to reduce the total cost of process due the need of a smaller amount of hot and cold utilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces a new mathematical model for the simultaneous synthesis of heat exchanger networks (HENs), wherein the handling pressure of process streams is used to enhance the heat integration. The proposed approach combines generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP) formulation, in order to minimize the total annualized cost composed by operational and capital expenses. A multi-stage superstructure is developed for the HEN synthesis, assuming constant heat capacity flow rates and isothermal mixing, and allowing for streams splits. In this model, the pressure and temperature of streams must be treated as optimization variables, increasing further the complexity and difficulty to solve the problem. In addition, the model allows for coupling of compressors and turbines to save energy. A case study is performed to verify the accuracy of the proposed model. In this example, the optimal integration between the heat and work decreases the need for thermal utilities in the HEN design. As a result, the total annualized cost is also reduced due to the decrease in the operational expenses related to the heating and cooling of the streams.