3 resultados para Colour differences

em Universidad de Alicante


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Elysia timida (Risso, 1818) colonizing the shallow waters of the Mar Menor Lagoon (Spain) exhibit a brown and a green morph. It was hypothesised that these morphs were the result of feeding preferentially on brown and green algae, respectively. E. timida and its potential food sources, Acetabularia acetabulum (Chlorophyta) and Halopteris filicina (Heterokontophyta) were collected by snorkelling during April 2010. Photosynthetic pigments were analysed by HPLC, photo-physiological parameters were estimated by PAM fluorometry and body colour was characterized by spectral reflectance. Digital photography was used to count the number and area of red spots (small red dots on the slug’s surface) on the parapodia of the 2 morphs. In the laboratory, green E. timida was fed with A. acetabulum cultured under 2 light treatments (high light, 600 µmol E m−2 s−1 and low light, 40 µmol E m−2 s−1), and digital photography was used to monitor colour alterations in E. timida. Spectral reflectance confirmed the colour differences, but both morphs showed a pigment composition similar to the green alga A. acetabulum and showed none of the pigments present in the brown alga H. filicina, neither immediately after collection of the slugs in situ, nor after the feeding experiment. A. acetabulum grown under high light intensity changed from green to brown colour and E. timida changed to brown colour when fed with high-light acclimated A. acetabulum. Thus, E. timida colour differences could not be attributed to feeding on different algae groups but was likely the result of feeding on A. acetabulum growing under different light intensities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been reported that for certain colour samples, the chromatic adaptation transform CAT02 imbedded in the CIECAM02 colour appearance model predicts corresponding colours with negative tristimulus values (TSVs), which can cause problems in certain applications. To overcome this problem, a mathematical approach is proposed for modifying CAT02. This approach combines a non-negativity constraint for the TSVs of corresponding colours with the minimization of the colour differences between those values for the corresponding colours obtained by visual observations and the TSVs of the corresponding colours predicted by the model, which is a constrained non-linear optimization problem. By solving the non-linear optimization problem, a new matrix is found. The performance of the CAT02 transform with various matrices including the original CAT02 matrix, and the new matrix are tested using visual datasets and the optimum colours. Test results show that the CAT02 with the new matrix predicted corresponding colours without negative TSVs for all optimum colours and the colour matching functions of the two CIE standard observers under the test illuminants considered. However, the accuracy with the new matrix for predicting the visual data is approximately 1 CIELAB colour difference unit worse compared with the original CAT02. This indicates that accuracy has to be sacrificed to achieve the non-negativity constraint for the TSVs of the corresponding colours.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Applied colorimetry is an important module in the program of the elective subject "Colour Science: industrial applications”. This course is taught in the Optics and Optometry Degree and it has been used as a testing for the application of new teaching and assessment techniques consistent with the new European Higher Education Area. In particular, the main objective was to reduce the attendance to lessons and encourage the individual and collective work of students. The reason for this approach is based on the idea that students are able to work at their own learning pace. Within this dynamic work, we propose online lab practice based on Excel templates that our research group has developed ad-hoc for different aspects of colorimetry, such as conversion to different colour spaces, calculation of perceptual descriptors (hue, saturation, lightness), calculation of colour differences, colour matching dyes, etc. The practice presented in this paper is focused on the learning of colour differences. The session is based on a specific Excel template to compute the colour differences and to plot different graphs with these colour differences defined at different colour spaces: CIE ΔE, CIE ΔE94 and the CIELAB colour space. This template is implemented on a website what works by addressing the student work at a proper and organized way. The aim was to unify all the student work from a website, therefore the student is able to learn in an autonomous and sequential way and in his own pace. To achieve this purpose, all the tools, links and documents are collected for each different proposed activity to achieve guided specific objectives. In the context of educational innovation, this type of website is normally called WebQuest. The design of a WebQuest is established according to the criteria of usability and simplicity. There are great advantages of using WebQuests versus the toolbox “Campus Virtual” available in the University of Alicante. The Campus Virtual is an unfriendly environment for this specific purpose as the activities are organized in different sectors depending on whether the activity is a discussion, an activity, a self-assessment or the download of materials. With this separation, it is more difficult that the student follows an organized sequence. However, our WebQuest provides a more intuitive graphical environment, and besides, all the tasks and resources needed to complete them are grouped and organized according to a linear sequence. In this way, the student guided learning is optimized. Furthermore, with this simplification, the student focuses on learning and not to waste resources. Finally, this tool has a wide set of potential applications: online courses of colorimetry applied for postgraduate students, Open Course Ware, etc.