6 resultados para Cobalt oxide electrodes

em Universidad de Alicante


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The direct electron transfer between indium–tin oxide electrodes (ITO) and cytochrome c encapsulated in different sol–gel silica networks was studied. Cyt c@silica modified electrodes were synthesized by a two-step encapsulation method mixing a phosphate buffer solution with dissolved cytochrome c and a silica sol prepared by the alcohol-free sol–gel route. These modified electrodes were characterized by cyclic voltammetry, UV–vis spectroscopy, and in situ UV–vis spectroelectrochemistry. The electrochemical response of encapsulated protein is influenced by the terminal groups of the silica pores. Cyt c does not present electrochemical response in conventional silica (hydroxyl terminated) or phenyl terminated silica. Direct electron transfer to encapsulated cytochrome c and ITO electrodes only takes place when the protein is encapsulated in methyl modified silica networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we present oxygen-nonstoichiometric transition metal oxides as highly prominent candidates to catalyze the industrially important oxidation reactions of hydrocarbons when hydrogen peroxide is employed as an environmentally benign oxidant. The proof-of-concept data are revealed for the complex cobalt oxide, YBaCo4O7+δ (0 < δ < 1.5), in the oxidation process of cyclohexene. In the 2-h reaction experiments YBaCo4O7+δ was found to be significantly more active (>60 % conversion) than the commercial TiO2 catalyst (<20 %) even though its surface area was less than one tenth of that of TiO2. In the 7-h experiments with YBaCo4O7+δ, 100 % conversion of cyclohexene was achieved. Immersion calorimetry measurements showed that the high catalytic activity may be ascribed to the exceptional ability of YBaCo4O7+δ to dissociate H2O2 and release active oxygen to the oxidation reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed metal oxide (MMO) electrodes have been applied to different technologies including chlorine production, organic compounds oxidation, water electrolysis, electroplating, etc. due to their catalytic, optical and electronic properties. Most of the existing MMO electrodes contain either toxic metals or precious metals of the platinum group. The aim of this study was to develop environmentally friendly and cost-effective MMO electrodes for water and organic compounds oxidation. Ti/Ta2O5-SnO2 electrodes of different nominal composition were prepared, and electrochemically and physically characterized. For water oxidation, Ti/SnO2 electrode with 5 at.% of Ta produced the highest electroactivity. Ti/SnO2 electrode with 7.5 at.% of Ta showed the best performance for the oxidation of methylene blue (MB). The electrocatalytic activity of the Ti/Ta2O5-SnO2 electrodes increased with the number of active layers. The maximum current of water oxidation reached 3.5 mA at 2.5 V when the electrode was covered with ten layers of Ta2O5. In case of the oxidation of 0.1 mM MB, eight and ten active layers of Ta2O5 significantly increased the electrode activity. The prepared electrodes have been found applicable for both water electrolysis and organic compounds oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work focuses on the preparation of flexible ruthenium oxide containing activated carbon cloth by electrodeposition. Different electrodeposition methods have been used, including chronoamperometry, chronopotentiometry and cyclic voltammetry. The electrochemical properties of the obtained materials have been measured. The results show that the potentiostatic method allows preparing composites with higher specific capacitance than the pristine activated carbon cloth. The capacitance values measured by cyclic voltammetry at 10 mV s−1 and 1 V of potential window were up to 160 and 180 F g−1. This means an improvement of 82% and 100% with respect to the capacitance of the pristine activated carbon cloth. This excellent capacitance enhancement is attributed to the small particle size (4–5 nm) and the three-dimensional nanoporous network of the ruthenium oxide film which allows reaching very high degree of oxide utilization without blocking the pore structure of the activated carbon cloth. In addition, the electrodes maintain the mechanical properties of the carbon cloth and can be useful for flexible devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant effort is being devoted to the study of photoactive electrode materials for artificial photosynthesis devices. In this context, photocathodes promoting water reduction, based on earth-abundant elements and possessing stability under illumination, should be developed. Here, the photoelectrochemical behavior of CuCrO2 sol–gel thin film electrodes prepared on conducting glass is presented. The material, whose direct band gap is 3.15 eV, apparently presents a remarkable stability in both alkaline and acidic media. In 0.1 M HClO4 the material is significantly photoactive, with IPCE values at 350 nm and 0.36 V vs. RHE of over 6% for proton reduction and 23% for oxygen reduction. This response was obtained in the absence of charge extraction layers or co-catalysts, suggesting substantial room for optimization. The photocurrent onset potential is equal to 1.06 V vs. RHE in both alkaline and acidic media, which guarantees the combination of the material with different photoanodes such as Fe2O3 or WO3, potentially yielding bias-free water splitting devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 3D mesoporous TiO2 material with well-developed mesostructure is prepared in the form of a binder-free thin (100 nm) film and studied as potential candidate for the negative electrode in lithium microbatteries. By appropriate thermal treatments, the selected crystal structure (anatase, rutile, or amorphous), and micro-/mesostructure of the materials was obtained. The effects of voltage window and prelithiation treatment improved first cycle reversibility up to 86% and capacity retention of 90% over 100 cycles. After a prolonged intercalation of lithium ions in ordered mesoporous TiO2 appeared small particles assigned to Li2Ti2O4 with cubic structure as observed from ex-situ TEM micrographs. This study highlights the flexibility of the potential window to which the electrode can operate. Maximum capacity values over 100 cycles of 470 μA h cm−2 μm−1 and 177 μA h cm−2 μm−1 are obtained for voltage ranges of 0.1–2.6 V and 1.0–2.6 V, respectively. The observed values are between 6 and 2 times higher than those obtained for films with 600 nm (80 μA h cm−2 μm−1) and 900 nm (92 μA h cm−2 μm−1) lengths. This indicates that 100 nm thin TiO2 films with high accessibility show finite-length type diffusion which is interesting for this particular application.