5 resultados para Climate and environment evolution
em Universidad de Alicante
Resumo:
We report on the quiescent state of the soft gamma repeater SGR 0501+4516 observed by XMM–Newton on 2009 August 30. The source exhibits an absorbed flux ∼75 times lower than that measured at the peak of the 2008 outburst, and a rather soft spectrum, with the same value of the blackbody temperature observed with ROSAT back in 1992. This new observation is put into the context of all existing X-ray data since its discovery in 2008 August, allowing us to complete the study of the timing and spectral evolution of the source from outburst until its quiescent state. The set of deep XMM–Newton observations performed during the few years time-scale of its outburst allows us to monitor the spectral characteristics of this magnetar as a function of its rotational period, and their evolution along these years. After the first ∼10 d, the initially hot and bright surface spot progressively cooled down during the decay. We discuss the behaviour of this magnetar in the context of its simulated secular evolution, inferring a plausible dipolar field at birth of 3 × 1014 G, and a current (magnetothermal) age of ∼10 kyr.
Resumo:
Paper submitted to the 7th International Symposium on Feedstock Recycling of Polymeric Materials (7th ISFR 2013), New Delhi, India, 23-26 October 2013.
Resumo:
We report on the discovery of a new member of the magnetar class, SGR J1935+2154, and on its timing and spectral properties measured by an extensive observational campaign carried out between 2014 July and 2015 March with Chandra and XMM–Newton (11 pointings). We discovered the spin period of SGR J1935+2154 through the detection of coherent pulsations at a period of about 3.24 s. The magnetar is slowing down at a rate of P˙=1.43(1)×10−11 s s−1 and with a decreasing trend due to a negative P¨ of −3.5(7) × 10−19 s s−2. This implies a surface dipolar magnetic field strength of ∼2.2 × 1014 G, a characteristic age of about 3.6 kyr and a spin-down luminosity Lsd ∼1.7 × 1034 erg s−1. The source spectrum is well modelled by a blackbody with temperature of about 500 eV plus a power-law component with photon index of about 2. The source showed a moderate long-term variability, with a flux decay of about 25 per cent during the first four months since its discovery, and a re-brightening of the same amount during the second four months. The X-ray data were also used to study the source environment. In particular, we discovered a diffuse emission extending on spatial scales from about 1 arcsec up to at least 1 arcmin around SGR J1935+2154 both in Chandra and XMM–Newton data. This component is constant in flux (at least within uncertainties) and its spectrum is well modelled by a power-law spectrum steeper than that of the pulsar. Though a scattering halo origin seems to be more probable we cannot exclude that part, or all, of the diffuse emission is due to a pulsar wind nebula.
Resumo:
Compositional and chemical analyses suggest that Middle Triassic–Lower Liassic continental redbeds (in the internal domains of the Betic, Maghrebian, and Apenninic chains) can be considered a regional lithosome marking the Triassic-Jurassic rift-valley stage of Tethyan rifting, which led to the Pangaea breakup and subsequent development of a mosaic of plates and microplates. Sandstones are quartzose to quartzolithic and represent a provenance of continental block and recycled orogen, made up mainly of Paleozoic metasedimentary rocks similar to those underlying the redbeds. Mudrocks display K enrichments; intense paleoweathering under a hot, episodically humid climate with a prolonged dry season; and sediment recycling. Redbeds experienced temperatures in the range of 100°–160°C and lithostatic/tectonic loading of more than 4 km. These redbeds represent an important stratigraphic signature to reconstruct a continental block (Mesomediterranean Microplate) that separated different realms of the western Tethys from Middle-Late Jurassic to Miocene, when it was completely involved in Alpine orogenesis.
Resumo:
Results of the monitoring network of the Posidonia oceanica meadows in the Valencia region in Spain are analysed. For spatial comparison the whole data set has been analysed, however, for temporal trends we only selected stations that have been monitored at least 6 years in the period of 2002–2011 (26 stations in 13 localities). At the south of the studied area, meadows are larger, and they have higher density and covering than that in the Valencia Gulf, excluding Oropesa meadow. Monitoring of P. oceanica meadows in the Valencia region in Spain indicates that most of them are stationary or they are increasing their density and covering while no decline was observed in the studied meadows. These results indicate that there is not a general decline of P. oceanica meadows and that the decline of P. oceanica, when it has been observed in other studies, is produced by local causes that may be managed at the local level. This study also reflects the importance of long series of direct data to analyse trends in the population dynamics for slow-growing species.