7 resultados para Chromia loaded sulfated titania

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper complexes containing inorganic ligands were loaded on a functionalized titania (F-TiO2) to obtain drug delivery systems. The as-received copper complexes and those released from titania were tested as toxic agents on different cancer cell lines. The sol–gel method was used for the synthesis and surface functionalization of the titania, as well as for loading the copper complexes, all in a single step. The resultant Cu/F-TiO2 materials were characterized by several techniques. An “in vitro” releasing test was developed using an aqueous medium. Different concentrations (15.6–1000 µg mL−1) of each copper complex, those loaded on titania (Cu/F-TiO2), functionalized titania, and cis-Pt as a reference material, were incubated on RG2, C6, U373, and B16 cancer cell lines for 24 h. The morphology of functionalized titania and the different Cu/F-TiO2 materials obtained consists of aggregated nanoparticles, which generate mesopores. The amorphous phase (in dominant proportion) and the anatase phase were the structures identified through the X-ray diffraction profiles. These results agree with high-resolution transmission electron microscopy. Theoretical studies indicate that the copper compounds were released by a Fickian diffusion mechanism. It was found that independently of the copper complex and also the cell line used, low concentrations of each copper compound were sufficient to kill almost 100 % of cancer cells. When the cancer cells were treated with increasing concentrations of the Cu/F-TiO2 materials the number of survival cells decreased. Both copper complexes alone as well as those loaded on TiO2 had higher toxic effect than cis-Pt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titania-supported platinum (mainly as Pt(II)) has been found to effectively catalyze the hydrosilylation of 1,3-diynes at 70 °C with low catalyst loading (0.25 mol %) under solvent-free conditions. Monohydrosilylation was achieved for diaryl-substituted diynes, whereas dialkyl-substituted diynes were transformed into the corresponding dihydrosilylated products in good yields. In every case, the process was proven to be highly stereoselective, with syn addition of the silicon–hydrogen bond, and regioselective, with the silicon moiety exclusively bonded to the most internal carbon atom of the 1,3-diyne (β-E product), as confirmed by X-ray crystallography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pd and bimetallic Ni50Pd50 nanoparticles protected by polyvinylpyrrolidone (PVP) have been synthesized by the reduction-by-solvent method and deposited on single wall carbon nanotubes (SWCNTs) to be tested as H2 sensors. The SWCNTs were deposited by drop casting from different suspensions. The Pd nanoparticles-based sensors show a very reproducible performance with good sensitivity and very low response times (few seconds) for different H2 concentrations, ranging from 0.2% to 5% vol. H2 in air at atmospheric pressure. The influence of the metal nanoparticle composition, the quality of SWCNTs suspension and the metal loading have been studied, observing that all these parameters play an important role in the H2 sensor performance. Evidence for water formation during the H2 detection on Pd nanoparticles has been found, and its repercussion on the behaviour of the assembled sensors is discussed. The sensor preparation procedure detailed in this work has proven to be simple and reproducible to prepare cost-effective and highly efficient H2 sensors that perform very well under real application conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platinum nanoparticles supported on titania efficiently catalyzed the diboration of alkynes and alkenes under solvent- and ligand-free conditions in air. The cis-1,2-diborylalkenes and 1,2-diborylalkanes were obtained in moderate to excellent yields following, in most cases, a simple filtration workup protocol. The versatility of the cis-1,2-diboronvinyl compounds was demonstrated in a series of organic transformations, including the Suzuki–Miyaura cross coupling and the boron–halogen exchange.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a comparative study between the catalytic performance of the 2% CuO/ceria-zirconia powder catalyst and the same catalyst supported on silicon carbide DPF (Diesel Particulate Filter) towards NO oxidation reaction and soot combustion reaction. The ceria-zirconia catalyst was prepared by the co-precipitation method and 2 wt% copper was incorporated by the incipient wetness impregnation method. The catalyst was incorporated onto the ceramic support using a simple and organic solvent-free procedure by a simply dipping the DPF into an aqueous solution of the catalyst. The powder catalyst has been characterized using N2 adsorption at −196 °C, XRD and Raman Spectroscopy; whereas the catalytic coating morphology has been evaluated by SEM and the mechanical stability by an adherence test. Both catalyst configurations were tested for NO oxidation to NO2 and for soot combustion under NOx/O2. The results revealed that incorporation of the very active copper/ceria-zirconia catalyst onto SiC-DPF has been successfully achieved by a simple coating procedure. Furthermore, the catalytic coating has shown suitable mechanical, chemical and thermal stability. A satisfactory catalytic performance of the catalytic-coated filter was reached towards the NO oxidation reaction. Moreover, it was proved that the catalytic coating is stable and the corresponding coated DPF can be reused for several cycles of NO oxidation without a significant decrease in its activity. Finally, it was verified that the loose-contact mode is a good choice to simulate the catalytic performance of this active phase in a real diesel particulate filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction of the band gap of titania is critically important to fully utilize its photocatalytic properties. Two main strategies, i.e. doping and partial reduction of Ti(IV), are the main alternatives available to date. Herein, we report a new synthesis strategy based on one-pot co-condensation of in situ prepared polymetallic titanium-alkoxide complexes with titanium tetrabutoxide. Using this direct reaction, it is possible to introduce organic compounds in the anatase phase, causing site distortions in the crystalline structure of the network. By using this strategy, a yellow and a black titania have been produced, with the latter showing a remarkable photocatalytic activity under visible-light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new hybrid molybdenum(IV) Mo3S7 cluster complexes derivatized with diimino ligands have been prepared by replacement of the two bromine atoms of [Mo3S7Br6]2− by a substituted bipyridine ligand to afford heteroleptic molybdenum(IV) Mo3S7Br4(diimino) complexes. Adsorption of the Mo3S7 cores from sample solutions on TiO2 was only achieved from the diimino functionalized clusters. The adsorbed Mo3S7 units were reduced on the TiO2 surface to generate an electrocatalyst that reduces the overpotential for the H2 evolution reaction by approximately 0.3 V (for 1 mA cm−2) with a turnover frequency as high as 1.4 s−1. The nature of the actual active molybdenum sulfide species has been investigated by X-ray photoelectron spectroscopy. In agreement with the electrochemical results, the modified TiO2 nanoparticles show a high photocatalytic activity for H2 production in the presence of Na2S/Na2SO3 as a sacrificial electron donor system.