2 resultados para Chemical Education
em Universidad de Alicante
Resumo:
The Global Experiment, Water: A Chemical Solution, was one of the flagship activities of the International Year of Chemistry (IYC). During the virtual colloquium of the spring 2012 online ConfChem conference, the main results of this year-long experiment were presented and discussed online for a week. Some of the main conclusions of the virtual conversations relate to the benefits of creating online communities of people sharing similar interests, the use of online educational platforms to gather massive amounts of data, and specific questions about the development of this IYC initiative. The activities of the global water experiment (GWE) were designed by a team of experts and the protocols are available online on the GWE Web site. The results were shown in one interactive world map that allowed students to learn about data visualization, validation, and interpretation. The feedback obtained from the participants of the GWE and later by the contributors of the virtual colloquium was very positive. Many participants asked specific and technical questions about the development of this experiment, while others excitedly endorsed the convenience of these large open-access activities to promote chemistry worldwide. The estimate is that over 2 million people took part in the GWE during the IYC. This communication summarizes one of the invited papers to the ConfChem online conference: A Virtual Colloquium to Sustain and Celebrate IYC 2011 Initiatives in Global Chemical Education, held from May 18 to June 29, 2012 and hosted by the ACS DivCHED Committee on Computers in Chemical Education and the IUPAC Committee on Chemistry Education.
Resumo:
In this work, we analyze the effect of demand uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear program (MILP) with the unique feature of incorporating explicitly the demand uncertainty using scenarios with given probability of occurrence. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact.