5 resultados para Central-western Brazil

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of the Numidian Formation (latest Oligocene to middle Miocene), characterized by ultra-mature quartzose arenites with abundant well-rounded frosted quartz grains, remains controversial. This formation, sedimented in the external domain of the Maghrebian Flysch Basin, displays three characteristic stratigraphic members with marked longitudinal (proximal–distal) and transverse (along-chain) variations with palaeogeographical importance. The origin of the Numidian supply is related to the outward tectogenetic propagation when a forebulge evolved in the African foreland, leading to the erosion of African cratonic areas rich in quartzose arenites (Nubian Sandstone-like). The ages of the Numidian Formation checked by Betic, Maghrebian and Southern Apennine data suggest a timing for the accretionary orogenic wedge, earlier in the Betic-Rifian Arc (after middle Burdigalian), later in the Algerian-Tunisian Tell (after late Burdigalian) and afterwards in Sicily and the Southern Apennines (after Langhian). A geodynamic evolutionary model for the central-western Mediterranean is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A synthetic study has been made to identify main tectono-sedimentary and geodynamic events in central-western Tethys. For this, an interdisciplinary analysis has been performed on successions belonging to tectonic units derived from Betic-Maghrebian-southern Apennine “Flysch basin” domain. The stratigraphic records of the internal, external, and mixed successions deposited in lateral basins of different chains show very similar characters, especially regarding: (a) lithostratigraphy and ages; (b) kind and provenance of supplies (immature and supermature petrofacies from internal and external margins, respectively); (c) presence of “mixed successions” (composed of alternating internal and external petrofacies) attesting to clear palaeogeographic relationships between opposite depositional systems; and (d) timing of the deformation. In addition, specific lithofacies reveal correspondence with similar sedimentary events, such as: (1) very thick silicoclastic supply concentrated in restricted time ranges indicating the main deformational phases in the margin/basin systems; (2) levels rich in black-shales, glauconian, siliceous-producers, and volcaniclastic intercalations, widespread in the studied successions and linked to particular events at the Tethyan scale (anoxic periods, starvation-upwelling, acid-intermediate penecontemporaneous volcanic activity, respectively). Tectonic influence has also been recorded by means of unconformities and tectofacies (such as turbidites, slumps, or olisthostromes, etc.), being correlated with the main deformational phases. Similar stratigraphic and tectonic events have also been found in the Calvana unit of Val Marecchia nappe (Ligurides, northern Apennine). Correlations of stratigraphic and tectonic events support the proposal of an evolutionary geodynamic model involving the presence of a “Mesomediterranean microplate” in intermediate position during Africa-Europe convergence. The closure of central-western Tethys occasioned the Betic-Maghrebian-southern Apennine oceanic branch deformation and the birth of perimediterranean chains during middle-late Miocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Early Miocene Bisciaro Fm., a marly limestone succession cropping out widely in the Umbria–Romagna–Marche Apennines, is characterized by a high amount of volcaniclastic content, characterizing this unit as a peculiar event of the Adria Plate margin. Because of this volcaniclastic event, also recognizable in different sectors of the central-western Mediterranean chains, this formation is proposed as a “marker” for the geodynamic evolution of the area. In the Bisciaro Fm., the volcaniclastic supply starts with the “Raffaello” bed (Earliest Aquitanian) that marks the base of the formation and ends in the lower portion of the Schlier Fm. (Late Burdigalian–Langhian p.p.). Forty-one studied successions allowed the recognition of three main petrofacies: (1) Pyroclastic Deposits (volcanic materials more than 90 %) including the sub-petrofacies 1A, Vitroclastic/crystallo-vitroclastic tuffs; 1B, Bentonitic deposits; and 1C, Ocraceous and blackish layers; (2) Resedimented Syn-Eruptive Volcanogenic Deposits (volcanic material 30–90 %) including the sub-petrofacies 2A, High-density volcanogenic turbidites; 2B, Low-density volcanogenic turbidites; 2C, Crystal-rich volcanogenic deposits; and 2D, Glauconitic-rich volcaniclastites; (3) Mixing of Volcaniclastic Sediments with Marine Deposits (volcanic material 5–30 %, mixed with marine sediments: marls, calcareous marls, and marly limestones). Coeval volcaniclastic deposits recognizable in different tectonic units of the Apennines, Maghrebian, and Betic Chains show petrofacies and chemical–geochemical features related to a similar calc-alkaline magmatism. The characterization of this event led to the hypothesis of a co-genetic relationship between volcanic activity centres (primary volcanic systems) and depositional basins (depositional processes) in the Early Miocene palaeogeographic and palaeotectonic evolution of the central-western Mediterranean region. The results support the proposal of a geodynamic model of this area that considers previously proposed interpretations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compositional and chemical analyses suggest that Middle Triassic–Lower Liassic continental redbeds (in the internal domains of the Betic, Maghrebian, and Apenninic chains) can be considered a regional lithosome marking the Triassic-Jurassic rift-valley stage of Tethyan rifting, which led to the Pangaea breakup and subsequent development of a mosaic of plates and microplates. Sandstones are quartzose to quartzolithic and represent a provenance of continental block and recycled orogen, made up mainly of Paleozoic metasedimentary rocks similar to those underlying the redbeds. Mudrocks display K enrichments; intense paleoweathering under a hot, episodically humid climate with a prolonged dry season; and sediment recycling. Redbeds experienced temperatures in the range of 100°–160°C and lithostatic/tectonic loading of more than 4 km. These redbeds represent an important stratigraphic signature to reconstruct a continental block (Mesomediterranean Microplate) that separated different realms of the western Tethys from Middle-Late Jurassic to Miocene, when it was completely involved in Alpine orogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sandstone petrography and mudstone mineralogy and geochemistry of Triassic mudstones and sandstones from continental redbeds of the Malaguide Complex (Betic Cordillera, southern Spain) provide useful information on provenance, palaeoclimate and geodynamics during the early stages of the Pangea break-up, and on their diagenetic evolution. The sandstones are quartzarenites to sub-litharenites, with minor lithic fragments and rare feldspars. The mudstone samples show a PAAS like elemental distribution. The samples likely record recycling processes from their metasedimentary basement rocks that significantly affected the weathering indices, and monitors cumulative effects, including a first cycle of weathering at the source rocks. Sandstone composition and chemical–mineralogical features of mudstones record a provenance derived from continental block and recycled orogen that were weathered under warm and episodically wet climate. Source areas were located towards the east of the present-day Malaguide outcrops, and were formed by fairly silicic rock types, made up mainly of Palaezoic metasedimentary rocks, similar to those of the Paleozoic underlying series, with subordinate contributions from magmatic–metamorphic sources, and a rare supply from mafic metavolcanic rocks. Clay-mineral distribution of mudstones is dominated by illite and illite/smectite mixed-layer that result from differences in provenance, weathering, and burial/temperature history. Illite crystallinity values, illitization of kaolinite, occurrence of typical authigenic minerals and apatite fission-track studies, coupled with a subsidence analysis of the whole Malaguide succession suggest burial depths of at least 4–6 km with temperatures of 140–160 °C, typical of the burial diagenetic stage, and confirm the Middle Miocene exhumation of the Betic Internal Domain tectonic stack topped by the Malaguide Complex.