7 resultados para Carbon films

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Controlled nanozeolite deposits are prepared by electrochemical techniques on a macroporous carbon support and binderless thin film electrodes of zeolite-templated carbon are synthesized using the deposits as templates. The obtained film electrodes exhibit extremely high area capacitance (10–12 mF cm−2) and ultrahigh rate capability in a thin film capacitor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrogenated amorphous carbon (a-C:H) films were grown on a poly(lactic acid) (PLA) substrate by means of a radiofrequency plasma-enhanced chemical vapour deposition (rf-PECVD) technique with different deposition times (5, 20 and 40 min). The main goal of this treatment was to increase the barrier properties of PLA, maintaining its original transparency and colour as well as controlling interactions with food simulants for packaging applications. Morphological, chemical, and mechanical properties of PLA/a-C:H systems were evaluated while permeability and overall migration tests were performed in order to determine the effect of the plasma treatment on the gas-barrier properties of PLA films and their application in food packaging. Morphological results suggested a good adhesion of the deposited layers onto the polymer surface and the samples treated for 5 and 20 min only slightly darkened the PLA film. X-ray photoelectron spectroscopy revealed that the structural properties of the carbon layer deposited onto the PLA film depend on the exposure time. PLA/a-C:H system treated for 5 min showed the highest barrier properties, while none of the studied samples exceeded the migration limit established by the current legislation, suggesting the suitability of these materials in packaging applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stabilization of reduced graphene oxide (RGO) sheets in aqueous dispersion using a wide range of surfactants of anionic, non-ionic and zwitterionic type has been investigated and compared under different conditions of pH, surfactant and RGO concentration, or sheet size. The observed differences in the performance of the surfactants were rationalized on the basis of their chemical structure (e.g., alkylic vs. aromatic hydrophobic tail or sulfonic vs. carboxylic polar head), thus providing a reference framework in the selection of appropriate surfactants for the processing of RGO suspensions towards particular purposes. RGO-surfactant composite paper-like films were also prepared through vacuum filtration of the corresponding mixed dispersions and their main characteristics were investigated. The composite paper-like films were also electrochemically characterized. Those prepared with two specific surfactants exhibited a high capacitance in relation to their surfactant-free counterpart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work studies the use of various single-walled carbon nanotube (SWCNT) buckypapers as catalyst supports for methanol electro-oxidation in acid media. Buckypapers were obtained by vacuum filtration from pristine and oxidized SWCNT suspensions in different liquid media. Pt–Ru catalysts supported on the buckypapers were prepared by multiple potentiostatic pulses using a diluted solution of Pt and Ru salts (2 mM H2PtCl6 + 2 mM RuCl3) in acid media. The resulting materials were characterized via SEM, TEM, EDX and ICP-OES analysis. Well dispersed rounded nanoparticles between 2 and 15 nm were successfully electrodeposited on the SWCNT buckypapers. The ruthenium content in the bimetallic deposits was between 32 and 48 at. %, while the specific surface areas of the catalysts were in the range of 72–113 m2 g−1. It was found that the solvent used to prepare the SWCNT buckypaper films has a strong influence on the catalyst dispersion, particle size and metal loading. Cyclic voltammetry and chronoamperometry experiments point out that the most active electrodes for methanol electro-oxidation were prepared with the buckypaper supports that were obtained from SWCNT dispersions in N-methyl-pyrrolidone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dopamine (DA) can be detected by electrochemical oxidation in conventional electrodes. However, the presence of other oxidizable species (interferents) usually present in physiological fluids at high concentrations (like ascorbic acid) makes very difficult its electrochemical detection. In the present work, glassy carbon electrodes have been modified with molecularly imprinted silica (MIS) films prepared by electroassisted deposition of sol–gel precursors. The production of MIS films was performed by adding the template molecule (DA) to the precursor sol. The molecular impression of silica was assessed showing a high coherency allowing a filtering capacity in the molecular scale. The MIS-modified electrodes present a high selectivity for the detection of DA in neutral or acidic solutions. The MIS-modified electrodes allow the amperometric determination of dopamine in solutions containing ascorbic acid with molar ratios lower than 1:50,000.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of crystalline carbon nanomaterials were used to reinforce polyaniline for use in electromechanical bilayer bending actuators. The objective is to analyze how the different graphitic structures of the nanocarbons affect and improve the in situ polymerized polyaniline composites and their subsequent actuator behavior. The nanocarbons investigated were multiwalled carbon nanotubes, nitrogen-doped carbon nanotubes, helical-ribbon carbon nanofibers and graphene oxide, each one presenting different shape and structural characteristics. Films of nanocarbon-PAni composite were tested in a liquid electrolyte cell system. Experimental design was used to select the type of nanocarbon filler and composite loadings, and yielded a good balance of electromechanical properties. Raman spectroscopy suggests good interaction between PAni and the nanocarbon fillers. Electron microscopy showed that graphene oxide dispersed the best, followed by multiwall carbon nanotubes, while nitrogen-doped nanotube composites showed dispersion problems and thus poor performance. Multiwall carbon nanotube composite actuators showed the best performance based on the combination of bending angle, bending velocity and maximum working cycles, while graphene oxide attained similarly good performance due to its best dispersion. This parallel testing of a broad set of nanocarbon fillers on PAni-composite actuators is unprecedented to the best of our knowledge and shows that the type and properties of the carbon nanomaterial are critical to the performance of electromechanical devices with other conditions remaining equal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous, electrically insulating SiO2 layers containing polystyrene sulfonate (PSS) were deposited on glassy carbon electrodes by an electrochemically assisted deposition method. The obtained material was characterized by microscopic, spectroscopic and thermal techniques. Silica-PSS films modify the electrochemical response of the glassy carbon electrodes against selected redox probes. Positively charged species show reduced diffusivities across the SiO2-PSS pores, which resulted in a concentration ratio higher than 1 for these species. The opposite behaviour was found for negatively charged redox probes. These observations can be interpreted in terms of the different affinity of the GC/SiO2-PSS-modified electrode for the electroactive species, as a consequence of the negatively charged porous silica.