2 resultados para CaO-ZrO(2) supports
em Universidad de Alicante
Resumo:
5% copper catalysts with Ce0.8M0.2Oδ supports (M = Zr, La, Ce, Pr or Nd) have been studied by rapid-scan operando DRIFTS for NOx Storage and Reduction (NSR) with high frequency (30 s) CO, H2 and 50%CO + 50%H2 micropulses. In the absence of reductant pulses, below 200–250 °C NOx was stored on the catalysts as nitrite and nitro groups, and above this temperature nitrates were the main species identified. The thermal stability of the NOx species stored on the catalysts depended on the acid/basic character of the dopant (M more acidic = NOx stored less stable ⇒ Zr4+ < none < Nd3+ < Pr3+ < La3+ ⇐ M more basic = NOx stored more stable). Catalysts regeneration was more efficient with H2 than with CO, and the CO + H2 mixture presented an intermediate behavior, but with smaller differences among the series of catalyst than observed using CO alone. N2 is the main NOx reduction product upon H2 regeneration. The highest NOx removal in NSR experiments performed at 400 °C with CO + H2 pulses was achieved with the catalyst with the most basic dopant (CuO/Ce0.8La0.2Oδ) while the poorest performing catalyst was that with the most acidic dopant (CuO/Ce0.8Zr0.2Oδ). The poor performance of CuO/Ce0.8Zr0.2Oδ in NSR experiments with CO pulses was attributed to its lower oxidation capacity compared to the other catalysts.
Resumo:
This work studies the use of various single-walled carbon nanotube (SWCNT) buckypapers as catalyst supports for methanol electro-oxidation in acid media. Buckypapers were obtained by vacuum filtration from pristine and oxidized SWCNT suspensions in different liquid media. Pt–Ru catalysts supported on the buckypapers were prepared by multiple potentiostatic pulses using a diluted solution of Pt and Ru salts (2 mM H2PtCl6 + 2 mM RuCl3) in acid media. The resulting materials were characterized via SEM, TEM, EDX and ICP-OES analysis. Well dispersed rounded nanoparticles between 2 and 15 nm were successfully electrodeposited on the SWCNT buckypapers. The ruthenium content in the bimetallic deposits was between 32 and 48 at. %, while the specific surface areas of the catalysts were in the range of 72–113 m2 g−1. It was found that the solvent used to prepare the SWCNT buckypaper films has a strong influence on the catalyst dispersion, particle size and metal loading. Cyclic voltammetry and chronoamperometry experiments point out that the most active electrodes for methanol electro-oxidation were prepared with the buckypaper supports that were obtained from SWCNT dispersions in N-methyl-pyrrolidone.