3 resultados para Ca2 -related genes

em Universidad de Alicante


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Liver X receptors (LXRs) are ligand-activated members of the nuclear receptor superfamily that regulate the expression of genes involved in lipid metabolism and inflammation, although their role in inflammation and immunity is less well known. It has been reported that oxysterols/LXRs may act as anti-inflammatory molecules, although opposite actions have also been reported. In this study, we investigated the effect of platelet-activating factor (PAF), a proinflammatory molecule, on LXRα signalling in human neutrophils. We found that PAF exerted an inhibitory effect on mRNA expression of TO901317-induced LXRα, ATP-binding cassette transporter A1, ATP-binding cassette transporter G1, and sterol response element binding protein 1c. This negative action was mediated by the PAF receptor, and was dependent on the release of reactive oxygen species elicited by PAF, as it was enhanced by pro-oxidant treatment and reversed by antioxidants. Current data also support the idea that PAF induces phosphorylation of the LXRα molecule in an extracellular signal-regulated kinase 1/2-mediated fashion. These results suggest that a possible mechanism by which PAF exerts its proinflammatory effect is through the downregulation of LXRα and its related genes, which supports the notion that LXRα ligands exert a modulatory role in the neutrophil-mediated inflammatory response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human neurodegenerative diseases, such as Parkinson’s disease (PD) and the neuromuscular disorders called dystroglycanopathies (DGPs), cause retinal impairments. We have used RNA-Seq technology to catalog all known genes linked to PD and DGPs expressed in the human retina and quantitate their mRNA levels in terms of FPKM. We have also characterized their expression profiles in the retina by determining their exonic, intronic and exon-intron junction expression levels, as well as the alternative splicing pattern of particular genes. We believe these data could pave the way toward understanding the molecular bases of sight deficiencies associated with neurodegenerative disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as an antifungal.