8 resultados para CONDUCTIVE POLYIMIDE ELECTROLYTES
em Universidad de Alicante
Resumo:
The simplicity of single-molecule junctions based on direct bonding of a small molecule between two metallic electrodes makes them an ideal system for the study of fundamental questions related to molecular electronics. Here we study the conductance properties of six different types of molecules by suspending individual molecules between Pt electrodes. All the molecular junctions show a typical conductance of about 1G0 which is ascribed to the dominant role of the Pt contacts. However, despite the metalliclike conductivity, the individual molecular signature is well expressed by the effect of molecular vibrations in the inelastic contribution to the conductance.
Resumo:
This article summarizes research on the application of a conductive cement paste as an anode in the now classical technique of electrochemical extraction of chlorides applied to a concrete structural element by spraying the paste on the surface of a concrete structural element, a pillar. Sprayed conductive cement paste, by adding graphite powder, is particularly useful to treat sizable vertical surfaces such are structural supports. Outcomes indicate that this kind of anode not only provides electrochemical chloride removal with similar efficiency, but also is able to retain moisture even without the use of a continuous dampening system.
Resumo:
The synthesis of nitrogenated carbon nanotubes (N-CNTs) with up to 6.1 wt% N, via the use of pyridine as the nitrogen containing carbon precursor, can provide a facile route to significantly enhance the low intrinsic specific capacitance of carbon nanotubes. The nitrogen functionalities determine this, at least, five-fold increase of the specific capacitance.
Resumo:
This article describes the research carried out regarding the application of cathodic protection (CP) and cathodic prevention (CPrev), in some cases with a pre-treatment of electrochemical chloride extraction (ECE), on representative specimens of reinforced concrete structures, using an anodic system consisting of a graphite-cement paste applied as a coating on the surface. The aim of this research is to find out the competence of this anode for the aforementioned electrochemical treatments. The efficiency of this anode has been clearly demonstrated, as well as its capability to apply a combined process of ECE and after CP.
Resumo:
This research studies the self-heating produced by the application of an electric current to conductive cement pastes with carbonaceous materials. The main parameters studied were: type and percentage of carbonaceous materials, effect of moisture, electrical resistance, power consumption, maximum temperature reached and its evolution and ice melting kinetics are the main parameters studied. A mathematical model is also proposed, which predicts that the degree of heating is adjustable with the applied voltage. Finally, the results have been applied to ensure that cementitious materials studied are feasible to control ice layers in transportation infrastructures.
Resumo:
Carbon and graphene-based materials often show some amount of pseudocapacitance due to their oxygen-functional groups. However, such pseudocapacitance is generally negligible in organic electrolytes and has not attracted much attention. In this work, we report a large pseudocapacitance of zeolite-templated carbon (ZTC) based on the oxygen-functional groups in 1 M tetraethylammonium tetrafluoroborate dissolved in propylene carbonate (Et4NBF4/PC). Due to its significant amount of active edge sites, a large amount of redox-active oxygen functional groups are introduced into ZTC, and ZTC shows a high specific capacitance (330 F g−1). Experimental results suggest that the pseudocapacitance could be based on the formation of anion and cation radicals of quinones and ethers, respectively. Moreover, ZTC shows pseudocapacitance also in 1 M lithium hexafluorophosphate dissolved with a mixture of ethylene carbonate and diethyl carbonate (LiPF6/EC+DEC) which is used for lithium-ion batteries and lithium-ion capacitors.
Resumo:
This paper aims to study the feasibility of highly conductive carbon fiber reinforced concrete (CFRC) as a self-heating material for ice formation prevention and curing in pavements. Tests were carried out in lab ambient conditions at different fixed voltages and then introduced in a freezer at −15 °C. The specimens inside the freezer were exposed to different fixed voltages when reaching +5 °C for prevention of icing and when reaching the temperature inside the freezer, i.e., −15 °C, for curing of icing. Results show that this concrete could act as a heating element in pavements with risk of ice formation, consuming a reasonable amount of energy for both anti-icing (prevention) and deicing (curing), which could turn into an environmentally friendly and cost-effective deicing method.
Resumo:
The voltammetric profile of preferentially shaped platinum nanoparticles has been used to analyze the different sites present on the surface. For the first time, this analysis has been made in NaOH solutions and revisited in sulfuric and perchloric acid media. The comparison with the voltammetric profiles of the model surfaces, that is, single-crystal electrodes, allows assigning the different signals appearing in the voltammograms of the nanoparticle to specific sites on the surface. A good correlation between the shape of the nanoparticle determined by TEM and the voltammetric profile is obtained. For the nanoparticles characterized in alkaline media, the adsorbed species on the surface have been characterized, and three major regions can be identified. Below 0.2 V, the major contribution is due to hydrogen adsorption, whereas above 0.6 V, adsorbed OH is the main species on the surface. Between those values, the signals are due to the competitive adsorption/desorption process of OH/H. New criteria for determining the active area in NaOH solutions has been proposed. In this medium, the total charge density measured between 0.06 and 0.90 V stands for 390 μC cm–2. The areas measured are in perfect agreement with those measured in acid media. Once the nanoparticles have been characterized, the behavior of the nanoparticles toward CO oxidation is analyzed and compared with that observed for single-crystal electrodes.