13 resultados para COMPUTER-AIDED MOLECULAR DESIGN
em Universidad de Alicante
Resumo:
Póster presentado en Escape 22, European Symposium on Computer Aided Process Engineering, University College London, UK, 17-20 June 2012.
Resumo:
Poster presented in the 24th European Symposium on Computer Aided Process Engineering (ESCAPE 24), Budapest, Hungary, June 15-18, 2014.
Resumo:
We address the optimization of discrete-continuous dynamic optimization problems using a disjunctive multistage modeling framework, with implicit discontinuities, which increases the problem complexity since the number of continuous phases and discrete events is not known a-priori. After setting a fixed alternative sequence of modes, we convert the infinite-dimensional continuous mixed-logic dynamic (MLDO) problem into a finite dimensional discretized GDP problem by orthogonal collocation on finite elements. We use the Logic-based Outer Approximation algorithm to fully exploit the structure of the GDP representation of the problem. This modelling framework is illustrated with an optimization problem with implicit discontinuities (diver problem).
Resumo:
In this work we study Forward Osmosis (FO) as an emerging desalination technology, and its capability to replace totally or partially Reverse Osmosis (RO) in order to reduce the great amount of energy required in the current desalination plants. For this purpose, we propose a superstructure that includes both membrane based desalination technologies, allowing the selection of only one of the technologies or a combination of both of them seeking for the optimal configuration of the network. The optimization problem is solved for a seawater desalination plant with a given fresh water production. The results obtained show that the optimal solution combines both desalination technologies to reduce not only the energy consumption but also the total cost of the desalination process in comparison with the same plant but operating only with RO.
Resumo:
In this work, we analyze the effect of incorporating life cycle inventory (LCI) uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear programming (MILP) coupled with a two-step transformation scenario generation algorithm with the unique feature of providing scenarios where the LCI random variables are correlated and each one of them has the desired lognormal marginal distribution. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study of a petrochemical supply chain. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact, and moreover the correlation among environmental burdens provides more realistic scenarios for the decision making process.
Resumo:
Today, the requirement of professional skills to university students is constantly increasing in our society. In our opinion, the content offered in official degrees need to be nourished with different variables, enriching their global professional knowledge in a parallel way; that is why, in recent years, there is a great multiplicity of complementary courses at university. One of the most socially demanded technical requirements within the architectural, design or engineering field is the management of 3D drawing software, becoming an indispensable reality in these sectors. Thus, this specific training becomes essential over two-dimension traditional design, because the inclusion of great possibilities of spatial development that go beyond conventional orthographic projections (plans, sections or elevations), allowing modelling and rotation of the selected items from multiple angles and perspectives. Therefore, this paper analyzes the teaching methodology of a complementary course for those technicians in the construction industry interested in computer-aided design, using modelling (SketchupMake) and rendering programs (Kerkythea). The course is developed from the technician point of view, by learning computer management and its application to professional development from a more general to a more specific view through practical examples. The proposed methodology is based on the development of real examples in different professional environments such as rehabilitation, new constructions, opening projects or architectural design. This multidisciplinary contribution improves criticism of students in different areas, encouraging new learning strategies and the independent development of three-dimensional solutions. Thus, the practical implementation of new situations, even suggested by the students themselves, ensures active participation, saving time during the design process and the increase of effectiveness when generating elements which may be represented, moved or virtually tested. In conclusion, this teaching-learning methodology improves the skills and competencies of students to face the growing professional demands of society. After finishing the course, technicians not only improved their expertise in the field of drawing but they also enhanced their capacity for spatial vision; both essential qualities in these sectors that can be applied to their professional development with great success.
Resumo:
A sequential design method is presented for the design of thermally coupled distillation sequences. The algorithm starts by selecting a set of sequences in the space of basic configurations in which the internal structure of condensers and reboilers is explicitly taken into account and extended with the possibility of including divided wall columns (DWC). This first stage is based on separation tasks (except by the DWCs) and therefore it does not provide an actual sequence of columns. In the second stage the best arrangement in N-1 actual columns is performed taking into account operability and mechanical constraints. Finally, for a set of candidate sequences the algorithm try to reduce the number of total columns by considering Kaibel columns, elimination of transfer blocks or columns with vertical partitions. An example illustrate the different steps of the sequential algorithm.
Resumo:
Presentation in the 11th European Symposium of the Working Party on Computer Aided Process Engineering, Kolding, Denmark, May 27-30, 2001.
Resumo:
There is a growing need within the footwear sector to customise the design of the last from which a specific footwear style is to be produced. This customisation is necessary for user comfort and health reasons, as the user needs to wear a suitable shoe. For this purpose, a relationship must be established between the user foot and the last with which the style will be made; up until now, no model has existed that integrates both elements. On the one hand, traditional customised footwear manufacturing techniques are based on purely artisanal procedures which make the process arduous and complex; on the other hand, geometric models proposed by different authors present the impossibility of implementing them in an industrial environment with limited resources for the acquisition of morphometric and structural data for the foot, apart from the fact that they do not prove to be sufficiently accurate given the non-similarity of the foot and last. In this paper, two interrelated geometric models are defined, the first, a bio-deformable foot model and the second, a deformable last model. The experiments completed show the goodness of the model, with it obtaining satisfactory results in terms of comfort, efficiency and precision, which make it viable for use in the sector.
Resumo:
This paper introduces a new optimization model for the simultaneous synthesis of heat and work exchange networks. The work integration is performed in the work exchange network (WEN), while the heat integration is carried out in the heat exchanger network (HEN). In the WEN synthesis, streams at high-pressure (HP) and low-pressure (LP) are subjected to pressure manipulation stages, via turbines and compressors running on common shafts and stand-alone equipment. The model allows the use of several units of single-shaft-turbine-compressor (SSTC), as well as helper motors and generators to respond to any shortage and/or excess of energy, respectively, in the SSTC axes. The heat integration of the streams occurs in the HEN between each WEN stage. Thus, as the inlet and outlet streams temperatures in the HEN are dependent of the WEN design, they must be considered as optimization variables. The proposed multi-stage superstructure is formulated in mixed-integer nonlinear programming (MINLP), in order to minimize the total annualized cost composed by capital and operational expenses. A case study is conducted to verify the accuracy of the proposed approach. The results indicate that the heat integration between the WEN stages is essential to enhance the work integration, and to reduce the total cost of process due the need of a smaller amount of hot and cold utilities.
Resumo:
This paper introduces a new mathematical model for the simultaneous synthesis of heat exchanger networks (HENs), wherein the handling pressure of process streams is used to enhance the heat integration. The proposed approach combines generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP) formulation, in order to minimize the total annualized cost composed by operational and capital expenses. A multi-stage superstructure is developed for the HEN synthesis, assuming constant heat capacity flow rates and isothermal mixing, and allowing for streams splits. In this model, the pressure and temperature of streams must be treated as optimization variables, increasing further the complexity and difficulty to solve the problem. In addition, the model allows for coupling of compressors and turbines to save energy. A case study is performed to verify the accuracy of the proposed model. In this example, the optimal integration between the heat and work decreases the need for thermal utilities in the HEN design. As a result, the total annualized cost is also reduced due to the decrease in the operational expenses related to the heating and cooling of the streams.
Resumo:
Mathematical morphology addresses the problem of describing shapes in an n-dimensional space using the concepts of set theory. A series of standardized morphological operations are defined, and they are applied to the shapes to transform them using another shape called the structuring element. In an industrial environment, the process of manufacturing a piece is based on the manipulation of a primitive object via contact with a tool that transforms the object progressively to obtain the desired design. The analogy with the morphological operation of erosion is obvious. Nevertheless, few references about the relation between the morphological operations and the process of design and manufacturing can be found. The non-deterministic nature of classic mathematical morphology makes it very difficult to adapt their basic operations to the dynamics of concepts such as the ordered trajectory. A new geometric model is presented, inspired by the classic morphological paradigm, which can define objects and apply morphological operations that transform these objects. The model specializes in classic morphological operations, providing them with the determinism inherent in dynamic processes that require an order of application, as is the case for designing and manufacturing objects in professional computer-aided design and manufacturing (CAD/CAM) environments. The operators are boundary-based so that only the points in the frontier are handled. As a consequence, the process is more efficient and more suitable for use in CAD/CAM systems.
Resumo:
Superstructure approaches are the solution to the difficult problem which involves the rigorous economic design of a distillation column. These methods require complex initialization procedures and they are hard to solve. For this reason, these methods have not been extensively used. In this work, we present a methodology for the rigorous optimization of chemical processes implemented on a commercial simulator using surrogate models based on a kriging interpolation. Several examples were studied, but in this paper, we perform the optimization of a superstructure for a non-sharp separation to show the efficiency and effectiveness of the method. Noteworthy that it is possible to get surrogate models accurate enough with up to seven degrees of freedom.