4 resultados para COMPACT RADIO-SOURCES

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The discovery almost three decades ago of non-nuclear, point-like X-ray sources with X-ray luminosities LX ≥ 3 × 1039 erg s−1 revolutionized the physics of black hole accretion. If of stellar origin, such Ultraluminous X-ray sources (ULXs) would have to accrete at super-Eddington rates in order to reach the observed high X-ray luminosities. Alternatively, ULXs could host sub-Eddington accreting intermediate-mass black holes, which are the long-time sought missing link between stellar and supermassive black holes and the possible seeds of the supermassive black holes that formed in the early Universe. The nature of ULXs can be better investigated in those cases for which a radio counterpart is detected. Radio observations of ULXs have revealed a wide variety of morphologies and source types, from compact and extended jets to radio nebulae and transient behaviours, providing the best observational evidence for the presence of an intermediate-mass black hole in some of them. The high sensitivity of the SKA will allow us to study the faintest ULX radio counterparts in the Local Universe as well as to detect new sources at much larger distances. It will thus perform a leap step in understanding ULXs, their accretion physics, and their possible role as seed black holes in supermassive black hole and galaxy growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central compact objects (CCOs) are X-ray sources lying close to the centre of supernova remnants, with inferred values of the surface magnetic fields significantly lower (≲1011 G) than those of standard pulsars. In this paper, we revise the hidden magnetic field scenario, presenting the first 2D simulations of the submergence and re-emergence of the magnetic field in the crust of a neutron star. A post-supernova accretion stage of about 10−4–10−3 M⊙ over a vast region of the surface is required to bury the magnetic field into the inner crust. When accretion stops, the field re-emerges on a typical time-scale of 1–100 kyr, depending on the submergence conditions. After this stage, the surface magnetic field is restored close to its birth values. A possible observable consequence of the hidden magnetic field is the anisotropy of the surface temperature distribution, in agreement with observations of several of these sources. We conclude that the hidden magnetic field model is viable as an alternative to the antimagnetar scenario, and it could provide the missing link between CCOs and the other classes of isolated neutron stars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultra Luminous X-ray Sources (ULXs) are extragalactic X-ray point sources with LX ∼ 1039 − 1041 erg s−1 discovered in the 80s with the Einstein satellite and confirmed as black hole X-ray binaries during the last decade. The nature of the compact object is highly controversial. They could be super-Eddington stellar-mass black holes or intermediate mass black holes. Deriving dynamical masses of the brightest ULXs, which can be done with OSIRIS, is the only way to find out the nature of the compact object.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Population synthesis studies constitute a powerful method to reconstruct the birth distribution of periods and magnetic fields of the pulsar population. When this method is applied to populations in different wavelengths, it can break the degeneracy in the inferred properties of initial distributions that arises from single-band studies. In this context, we extend previous works to include X-ray thermal emitting pulsars within the same evolutionary model as radio-pulsars. We find that the cumulative distribution of the number of X-ray pulsars can be well reproduced by several models that, simultaneously, reproduce the characteristics of the radio-pulsar distribution. However, even considering the most favourable magneto-thermal evolution models with fast field decay, lognormal distributions of the initial magnetic field overpredict the number of visible sources with periods longer than 12 s. We then show that the problem can be solved with different distributions of magnetic field, such as a truncated lognormal distribution, or a binormal distribution with two distinct populations. We use the observational lack of isolated neutron stars (NSs) with spin periods P > 12 s to establish an upper limit to the fraction of magnetars born with B > 1015 G (less than 1 per cent). As future detections keep increasing the magnetar and high-B pulsar statistics, our approach can be used to establish a severe constraint on the maximum magnetic field at birth of NSs.