9 resultados para COMMITTEES OF ACADEMIC AFFAIRS
em Universidad de Alicante
Resumo:
In recent years, several explanatory models have been developed which attempt to analyse the predictive worth of various factors in relation to academic achievement, as well as the direct and indirect effects that they produce. The aim of this study was to examine a structural model incorporating various cognitive and motivational variables which influence student achievement in the two basic core skills in the Spanish curriculum: Spanish Language and Mathematics. These variables included differential aptitudes, specific self-concept, goal orientations, effort and learning strategies. The sample comprised 341 Spanish students in their first year of Compulsory Secondary Education. Various tests and questionnaires were used to assess each student, and Structural Equation Modelling (SEM) was employed to study the relationships in the initial model. The proposed model obtained a satisfactory fit for the two subjects studied, and all the relationships hypothesised were significant. The variable with the most explanatory power regarding academic achievement was mathematical and verbal aptitude. Also notable was the direct influence of specific self-concept on achievement, goal-orientation and effort, as was the mediatory effect that effort and learning strategies had between academic goals and final achievement.
Resumo:
As a result of studies examining factors involved in the learning process, various structural models have been developed to explain the direct and indirect effects that occur between the variables in these models. The objective was to evaluate a structural model of cognitive and motivational variables predicting academic achievement, including general intelligence, academic self-concept, goal orientations, effort and learning strategies. The sample comprised of 341 Spanish students in the first year of compulsory secondary education. Different tests and questionnaires were used to evaluate each variable, and Structural Equation Modelling (SEM) was applied to contrast the relationships of the initial model. The model proposed had a satisfactory fit, and all the hypothesised relationships were significant. General intelligence was the variable most able to explain academic achievement. Also important was the direct influence of academic self-concept on achievement, goal orientations and effort, as well as the mediating ability of effort and learning strategies between academic goals and final achievement.
Resumo:
Academic goals and academic self-attributions are relevant variables in school settings. The objective of this study is to identify whether there are combinations of multiple goals that lead to different motivational profiles and to determine whether there are significant differences between the groups obtained regarding causal attributions of success and failure (ability, effort, or external causes) in Mathematics and Language and Literature, and in overall academic performance. The Goal Achievement Tendencies Questionnaire (AGTQ) and the Sydney Attribution Scale (SAS) were administered to a sample of 2022 students of compulsory secondary education, ranging in age from 12 to 16 years (M = 13.81, SD = 1.35). Cluster analysis identified four motivational profiles: a group of students with a high generalized motivation profile, a group of students with low generalized motivation profile, a group of students with predominance of learning goals and achievement goals, and a final group of students with predominance of social reinforcement goals. Results revealed statistically significant differences between the profiles obtained in academic self-attributions.
Resumo:
The present study examined the predictive effects of intellectual ability, self-concept, goal orientations, learning strategies, popularity and parent involvement on academic achievement. Hierarchical regression analysis and path analysis were performed among a sample of 1398 high school students (mean age = 12.5; SD =.67) from eight education centers from the province of Alicante (Spain). Cognitive and non-cognitive variables were measured using validated questionnaires, whereas academic achievement was assessed using end-of-term grades obtained by students in nine subjects. The results revealed significant predictive effects of all of the variables. The model proposed had a satisfactory fit, and all of the hypothesized relationships were significant. These findings support the importance of including non-cognitive variables along with cognitive variables when predicting a model of academic achievement.
Resumo:
The aim of this study was to analyse the relationship between sociometric types, behavioural categories and academic achievement in a sample of 1,349 compulsory secondary education students (51.7% boys), ranging in age from 12 to 16 years. The students’ sociometric identification was performed by using the Programa Socio and academic performance was measured by school marks provided by teachers in the subjects of Spanish language, mathematics and average academic performance. The results show that sociometric types were significant predictors of academic achievement, as students who were rated positively by their peers (popular, leaders, collaborators and good students) were more likely to have high academic achievement (in mathematics, Spanish language and average academic achievement) than students rated negatively by peers (rejected-aggressive, rejected-shy, neglected and bullies).
Resumo:
This work addresses the optimization of ammonia–water absorption cycles for cooling and refrigeration applications with economic and environmental concerns. Our approach combines the capabilities of process simulation, multi-objective optimization (MOO), cost analysis and life cycle assessment (LCA). The optimization task is posed in mathematical terms as a multi-objective mixed-integer nonlinear program (moMINLP) that seeks to minimize the total annualized cost and environmental impact of the cycle. This moMINLP is solved by an outer-approximation strategy that iterates between primal nonlinear programming (NLP) subproblems with fixed binaries and a tailored mixed-integer linear programming (MILP) model. The capabilities of our approach are illustrated through its application to an ammonia–water absorption cycle used in cooling and refrigeration applications.
Resumo:
Characterization of sound absorbing materials is essential to predict its acoustic behaviour. The most commonly used models to do so consider the flow resistivity, porosity, and average fibre diameter as parameters to determine the acoustic impedance and sound absorbing coefficient. Besides direct experimental techniques, numerical approaches appear to be an alternative to estimate the material’s parameters. In this work an inverse numerical method to obtain some parameters of a fibrous material is presented. Using measurements of the normal incidence sound absorption coefficient and then using the model proposed by Voronina, subsequent application of basic minimization techniques allows one to obtain the porosity, average fibre diameter and density of a sound absorbing material. The numerical results agree fairly well with the experimental data.
Resumo:
In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.
Resumo:
Purpose. The DBA/2J mouse line develops essential iris atrophy, pigment dispersion, and glaucomatous age-related changes, including an increase of IOP, optic nerve atrophy, and retinal ganglion cell (RGC) death. The aim of this study was to evaluate possible morphological changes in the outer retina of the DBA/2J mouse concomitant with disease progression and aging, based on the reduction of both the a- and b-waves and photopic flicker ERGs in this mouse line. Methods. Vertically sectioned DBA/2J mice retinas were evaluated at 3, 8, and 16 months of age using photoreceptor, horizontal, and bipolar cell markers. Sixteen-month-old C57BL/6 mice retinas were used as controls. Results. The DBA/2J mice had outer retinal degeneration at all ages, with the most severe degeneration in the oldest retinas. At 3 months of age, the number of photoreceptor cells and the thickness of the OPL were reduced. In addition, there was a loss of horizontal and ON-bipolar cell processes. At 8 months of age, RGC degeneration occurred in patches, and in the outer retina overlying these patches, cone morphology was impaired with a reduction in size as well as loss of outer segments and growth of horizontal and bipolar cell processes into the outer nuclear layer. At 16 months of age, connectivity between photoreceptors and horizontal and bipolar cell processes overlying these patches was lost. Conclusions. Retinal degeneration in DBA/2J mice includes photoreceptor death, loss of bipolar and horizontal cell processes, and loss of synaptic contacts in an aging-dependent manner.