4 resultados para COLORED FLUORINATED POLYIMIDES

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a novel kind of hybrid pigment based on nanoclays and dyes was synthesized and characterized. These nanoclay-based pigments (NCPs) were prepared at the laboratory with sodium montmorillonite nanoclay (NC) and methylene blue (MB). The cation-exchange capacity of NC exchanged with MB was varied to obtain a wide color gamut. The synthesized nanopigments were thoroughly characterized. The NCPs were melt-mixed with linear low-density polyethylene (PE) with an internal mixer. Furthermore, samples with conventional colorants were prepared in the same way. Then, the properties (mechanical, thermal, and colorimetric) of the mixtures were assessed. The PE–NCP samples developed better color properties than those containing conventional colorants and used as references, and their other properties were maintained or improved, even at lower contents of dye compared to that with the conventional colorants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biopolymers do not have competitive prices, which has prevented their industrial exploitation on a global scale so far. In this context, Using nanoclays, improvements in certain biopolymer properties, mainly mechanical and thermal, have been achieved. However, research has been much less focused on changing optical properties through the incorporation of nanoclays. At the same time, current research has focused on obtaining nanopigments, by organic dyes adsoptions into different nanoclays in order to achieve sustainable colouring and high performance materials. By combining advances in these lines of research, biodegradable composites with optimal mechanical and optical properties can be obtained. The aim of this work is to find the optimal formulation of naturally sourced nanopigments, incorporate them into a biological origin epoxy resin, and obtain a significant improvement in their mechanical, and optical properties. We combine three structural modifiers in the nanopigment synthesis: surfactant, silane and mordant salt. The latter was selected in order to replicate the mordant textile dyeing with natural dyes. Using a Taguchi’s desing L8, we look for the effect of the presence of the modifiers, the pH acidification, and the interactions effect between the synthesis factors. Three natural dyes were selected: chlorophyll, beta-carotene, and beetroot extract. Furthermore we use two kinds of laminar nanoclays, differentiated by the ion exchange charge: montmorillonite, and hydrotalcite. Then the thermal, mechanical and colorimetric characterization of the bionanocomposite materials was carried out. The optimal conditions to obtain the best bionanocomposite materials are using acid pH, and modifying the nanoclays with mordant and surfactant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM), in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paper submitted to the 43rd International Symposium on Robotics (ISR2012), Taipei, Taiwan, Aug. 29-31, 2012.