6 resultados para CHEMICAL CHARACTERISTICS
em Universidad de Alicante
Resumo:
Carbon-supported Pt–Sn catalysts commonly contain Pt–Sn alloy and/or Pt–Sn bimetallic systems (Sn oxides). Nevertheless, the origin of the promotion effect due to the presence of Sn in the Pt–Sn/C catalyst towards ethanol oxidation in acid media is still under debate and some contradictions. Herein, a series of Ptx–Sny/C catalysts with different atomic ratios are synthesized by a deposition process using formic acid as the reducing agent. Catalysts structure and chemical compositions are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and their relationship with catalytic behavior towards ethanol electro-oxidation was established. Geometric structural changes are producing by highest Sn content (Pt1–Sn1/C) promoted the interaction of Pt and Sn forming a solid solution of Pt–Sn alloy phase, whereas, the intermediate and lowest Sn content (Pt2–Sn1/C and Pt3–Sn1/C, respectively) promoted the electronic structure modifications of Pt by Sn addition without the formation of a solid solution. The amount of Sn added affects the physical and chemical characteristics of the bimetallic catalysts as well as reducing the amount of Pt in the catalyst composition and maintaining the electrocatalytic activities at the anode. However, the influence of the Sn oxidation state in Pt–Sn/C catalysts surfaces and the alloy formation between Pt and Sn as well as with the atomic ratio on their catalytic activity towards ethanol oxidation appears minimal. Similar methodologies applied for synthesis of Ptx–Sny/C catalysts with a small change show differences with the results obtained, thus highlighting the importance of the conditions of the preparation method.
Resumo:
Background. The extraction of salt from seawater by means of coastal solar salterns is a very well-described process. Moreover, the characterization of these environments from ecological, biochemical and microbiological perspectives has become a key focus for many research groups all over the world over the last 20 years. In countries such as Spain, there are several examples of coastal solar salterns (mainly on the Mediterranean coast) and inland solar salterns, from which sodium chloride is obtained for human consumption. However, studies focused on the characterization of inland solar salterns are scarce and both the archaeal diversity and the plant communities inhabiting these environments remain poorly described. Results. Two of the inland solar salterns (termed Redonda and Penalva), located in the Alto Vinalopó Valley (Alicante, Spain), were characterized regarding their geological and physico-chemical characteristics and their archaeal and botanical biodiversity. A preliminary eukaryotic diversity survey was also performed using saline water. The chemical characterization of the brine has revealed that the salted groundwater extracted to fill these inland solar salterns is thalassohaline. The plant communities living in this environment are dominated by Sarcocornia fruticosa (L.) A.J. Scott, Arthrocnemum macrostachyum (Moris) K. Koch, Suaeda vera Forsk. ex Gmelin (Amaranthaceae) and several species of Limonium (Mill) and Tamarix (L). Archaeal diversity was analyzed and compared by polymerase chain reaction (PCR)-based molecular phylogenetic techniques. Most of the sequences recovered from environmental DNA samples are affiliated with haloarchaeal genera such as Haloarcula, Halorubrum, Haloquadratum and Halobacterium, and with an unclassified member of the Halobacteriaceae. The eukaryote Dunaliella was also present in the samples. Conclusions. To our knowledge, this study constitutes the first analysis centered on inland solar salterns located in the southeastern region of Spain. The results obtained revealed that the salt deposits of this region have marine origins. Plant communities typical of salt marshes are present in this ecosystem and members of the Halobacteriaceae family can be easily detected in the microbial populations of these habitats. Possible origins of the haloarchaea detected in this study are discussed.
Resumo:
Carbon-supported Pt x –Rh y –Sn z catalysts (x:y:z = 3:1:4, 6:2:4, 9:3:4) are prepared by Pt, Rh, and Sn precursors reduction in different addition order. The materials are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques and are evaluated for the electrooxidation of ethanol in acidic media by cyclic voltammetry, chronoamperometry, and anode potentiostatic polarization. The influence of both the order in which the precursors are added and the composition of metals in the catalysts on the electrocatalytic activity and physico-chemical characteristics of Pt x –Rh y –Sn z /C catalysts is evaluated. Oxidized Rh species prevail on the surface of catalysts synthesized by simultaneous co-precipitation, thus demonstrating the influence of synthesis method on the oxidation state of catalysts. Furthermore, high amounts of Sn in composites synthesized by co-precipitation result in very active catalysts at low potentials (bifunctional effect), while medium Sn load is needed for sequentially deposited catalysts when the electronic effect is most important (high potentials), since more exposed Pt and Rh sites are needed on the catalyst surface to alcohol oxidation. The Pt3–Rh1–Sn4/C catalyst prepared by co-precipitation is the most active at potentials lower than 0.55 V (related to bifunctional effect), while the Pt6–Rh2–Sn4/C catalyst, prepared by sequential precipitation (first Rh and, after drying, Pt + Sn), is the most active above 0.55 V.
Resumo:
The stabilization of reduced graphene oxide (RGO) sheets in aqueous dispersion using a wide range of surfactants of anionic, non-ionic and zwitterionic type has been investigated and compared under different conditions of pH, surfactant and RGO concentration, or sheet size. The observed differences in the performance of the surfactants were rationalized on the basis of their chemical structure (e.g., alkylic vs. aromatic hydrophobic tail or sulfonic vs. carboxylic polar head), thus providing a reference framework in the selection of appropriate surfactants for the processing of RGO suspensions towards particular purposes. RGO-surfactant composite paper-like films were also prepared through vacuum filtration of the corresponding mixed dispersions and their main characteristics were investigated. The composite paper-like films were also electrochemically characterized. Those prepared with two specific surfactants exhibited a high capacitance in relation to their surfactant-free counterpart.
Resumo:
With advances in the synthesis and design of chemical processes there is an increasing need for more complex mathematical models with which to screen the alternatives that constitute accurate and reliable process models. Despite the wide availability of sophisticated tools for simulation, optimization and synthesis of chemical processes, the user is frequently interested in using the ‘best available model’. However, in practice, these models are usually little more than a black box with a rigid input–output structure. In this paper we propose to tackle all these models using generalized disjunctive programming to capture the numerical characteristics of each model (in equation form, modular, noisy, etc.) and to deal with each of them according to their individual characteristics. The result is a hybrid modular–equation based approach that allows synthesizing complex processes using different models in a robust and reliable way. The capabilities of the proposed approach are discussed with a case study: the design of a utility system power plant that has been decomposed into its constitutive elements, each treated differently numerically. And finally, numerical results and conclusions are presented.
Resumo:
In this study, the filtration process and the biomass characteristics in a laboratory-scale submerged membrane bioreactor (MBR) equipped with a hollow fiber (HF) microfiltration membrane were studied at different solid retention times (SRT). The MBR was fed by synthetic wastewater and the organic loading rate (OLR) was 0.5, 0.2, 0.1, and 0.08 kg COD kg VSS−1 d−1 for 10, 30, 60, and 90 days of SRT, respectively. The hydraulic retention time was 8.4 h and the permeate flux was 6 L m−2 h−1(LMH). Data analysis confirmed that at all the studied SRTs, the HF-MBR operated very good obtaining of high quality permeates. Chemical Oxygen Demand (COD) removal efficiencies were higher than 95%. The best filtration performance was reached at SRT of 30 d. On the other hand, the respirometric analysis showed that biomass was more active and there was more biomass production at low SRTs. The concentration of soluble extracellular polymeric substances (EPS) decreased with increasing SRT. A decrease of soluble EPS caused a decrease of membrane fouling rate, decreasing the frequency of chemical cleanings. The floc size decreased with SRT increasing. At high SRTs, there was more friction among particles due to the increase of the cellular density and the flocs broke decreasing their size.