3 resultados para Brane Dynamics in Gauge Theories

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the influence of a uniform current j⃗ on the magnetization dynamics of a ferromagnetic metal. We find that the magnon energy ε(q⃗) has a current-induced contribution proportional to q⃗⋅J→, where J→ is the spin current, and predict that collective dynamics will be more strongly damped at finite j⃗. We obtain similar results for models with and without local moment participation in the magnetic order. For transition metal ferromagnets, we estimate that the uniform magnetic state will be destabilized for j≳109A cm-2. We discuss the relationship of this effect to the spin-torque effects that alter magnetization dynamics in inhomogeneous magnetic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have analyzed discretionary accruals to address earnings-smoothing behaviors in the banking industry. We argue that the characteristic link between accruals and earnings may be nonlinear, since both the incentives to manipulate income and the practical way to do so depend partially on the relative size of earnings. Given a sample of 15,268 US banks over the period 1996–2011, the main results in this paper suggest that, depending on the size of earnings, bank managers tend to engage in earnings-decreasing strategies when earnings are negative (“big-bath”), use earnings-increasing strategies when earnings are positive, and use provisions as a smoothing device when earnings are positive and substantial (“cookie-jar” accounting). This evidence, which cannot be explained by the earnings-smoothing hypothesis, is consistent with the compensation theory. Neglecting nonlinear patterns in the econometric modeling of these accruals may lead to misleading conclusions regarding the characteristic strategies used in earnings management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We quantify the rate and efficiency of picosecond electron transfer (ET) from PbS nanocrystals, grown by successive ionic layer adsorption and reaction (SILAR), into a mesoporous SnO2 support. Successive SILAR deposition steps allow for stoichiometry- and size-variation of the QDs, characterized using transmission electron microscopy. Whereas for sulfur-rich (p-type) QD surfaces substantial electron trapping at the QD surface occurs, for lead-rich (n-type) QD surfaces, the QD trapping channel is suppressed and the ET efficiency is boosted. The ET efficiency increase achieved by lead-rich QD surfaces is found to be QD-size dependent, increasing linearly with QD surface area. On the other hand, ET rates are found to be independent of both QD size and surface stoichiometry, suggesting that the donor–acceptor energetics (constituting the driving force for ET) are fixed due to Fermi level pinning at the QD/oxide interface. Implications of our results for QD-sensitized solar cell design are discussed.