2 resultados para Bovines - Catabolism of progesterone

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hormonal variations during the menstrual cycle (MC) may influence trainability of strength. We investigated the effects of a follicular phase-based strength training (FT) on muscle strength, muscle volume and microscopic parameters, comparing it to a luteal phase-based training (LT). Eumenorrheic women without oral contraception (OC) (N = 20, age: 25.9 ± 4.5 yr, height: 164.2 ± 5.5 cm, weight: 60.6 ± 7.8 kg) completed strength training on a leg press for three MC, and 9 of them participated in muscle biopsies. One leg had eight training sessions in the follicular phases (FP) and only two sessions in the luteal phases (LP) for follicular phase-based training (FT), while the other leg had eight training sessions in LP and only two sessions in FP for luteal phase-based training (LT). Estradiol (E2), progesterone (P4), total testosterone (T), free testosterone (free T) and DHEA-s were analysed once during FP (around day 11) and once during LP (around day 25). Maximum isometric force (Fmax), muscle diameter (Mdm), muscle fibre composition (No), fibre diameter (Fdm) and cell nuclei-to-fibre ratio (N/F) were analysed before and after the training intervention. T and free T were higher in FP compared to LP prior to the training intervention (P < 0.05). The increase in Fmax after FT was higher compared to LT (P <0.05). FT also showed a higher increase in Mdm than LT (P < 0.05). Moreover, we found significant increases in Fdm of fibre type ΙΙ and in N/F only after FT; however, there was no significant difference from LT. With regard to change in fibre composition, no differences were observed between FT and LT. FT showed a higher gain in muscle strength and muscle diameter than LT. As a result, we recommend that eumenorrheic females without OC should base the periodization of their strength training on their individual MC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The haloarchaeon Haloferax mediterranei is able to grow in the presence of different inorganic and organic nitrogen sources by means of the assimilatory pathway under aerobic conditions. In order to identify genes of potential importance in nitrogen metabolism and its regulation in the halophilic microorganism, we have analysed its global gene expression in three culture media with different nitrogen sources: (a) cells were grown stationary and exponentially in ammonium, (b) cells were grown exponentially in nitrate, and (c) cells were shifted to nitrogen starvation conditions. The main differences in the transcriptional profiles have been identified between the cultures with ammonium as nitrogen source and the cultures with nitrate or nitrogen starvation, supporting previous results which indicate the absence of ammonium as the factor responsible for the expression of genes involved in nitrate assimilation pathway. The results have also permitted the identification of transcriptional regulators and changes in metabolic pathways related to the catabolism and anabolism of amino acids or nucleotides. The microarray data was validated by real-time quantitative PCR on 4 selected genes involved in nitrogen metabolism. This work represents the first transcriptional profiles study related to nitrogen assimilation metabolism in extreme halophilic microorganisms using microarray technology.