2 resultados para Biosolids

em Universidad de Alicante


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reforestation projects in semiarid lands often yield poor results. Water scarcity, poor soil fertility, and structure strongly limit the survival and growth of planted seedlings in these areas. At two experimental semiarid sites, we evaluated a variety of low-cost planting techniques in order to increase water availability to plants. Treatments included various combinations of traditional planting holes; water-harvesting microcatchments; stone or plastic mulches; small waterproof sheets to increase water harvesting; dry wells; buried clay pots; and deep irrigation. Some of these treatments were also combined with addition of composted biosolids. Waterproof sheets significantly enhanced water harvesting (43%) and soil moisture in the planting hole (40%), especially for low-intensity rainfall events. Treatment effects on the survival and growth of Olea europaea seedlings varied between experimental sites. At the most water-limited site, clay pots, and dry wells improved seedling survival, while no treatment enhanced seedling growth. At the least water-stressed site, the application of composted sludge significantly improved seedling growth. We conclude that nutrient-mediated stress is subordinate to water stress in arid and semiarid environments, and we suggest modifications on the microsite scale to address these limiting conditions in Mediterranean drylands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although hydrothermal carbonization of biomass components is known to be mainly governed by reaction temperature, consistent reports on the effect and statistical significance of process conditions on hydrochar properties are still lacking. The objective of this research was to determine the importance and significance of reaction temperature, retention time and solid load on the properties of hydrochar produced from an industrial lignocellulosic sludge residue. According to the results, reaction temperature and retention time had a statistically significant effect on hydrochar ash content, solid yield, carbon content, O/C-ratio, energy densification and energy yield as reactor solid load was statistically insignificant for all acquired models within the design range. Although statistically significant, the effect of retention time was 3–7 times lower than that of reaction temperature. Predicted dry ash-free solid yields of attained hydrochar decreased to approximately 40% due to the dissolution of biomass components at higher reaction temperatures, as respective oxygen contents were comparable to subbituminous coal. Significant increases in the carbon contents of hydrochar led to predicted energy densification ratios of 1–1.5 with respective energy yields of 60–100%. Estimated theoretical energy requirements of carbonization were dependent on the literature method used and mainly controlled by reaction temperature and reactor solid load. The attained results enable future prediction of hydrochar properties from this feedstock and help to understand the effect of process conditions on hydrothermal treatment of lignocellulosic biomass.