6 resultados para Bidentate ligand
em Universidad de Alicante
Resumo:
A Rh phosphine complex, derived from the Wilkinson’s catalyst, has been immobilized by ion-exchange on the ammonium form of a Al-MCM-41 sample. Ammonium ions have been exchanged by cholamine ions, which act as an amine ligand, and then the Wilkinson’s catalyst has been immobilized by substitution of a phosphine ligand by the anchored amine. This is a novel immobilization procedure, as a ligand, instead of the whole complex, is tethered to the support by ion exchange. The obtained hybrid catalyst has been characterized by Elemental Analysis, DRIFTS and XPS. The quantitative exchange of ammonium by cholamine and coordination of Rh to amines has been observed. Most of the anchored Rh is considered to be coordinated to the ligand tethered to the support and a small proportion seems to be interacting with the protonated ligand or with the support surface. The catalyst has been tested in the hydrogenation of cyclohexene and in the hydroformylation of 1-octene. In the first case the catalyst is active and reusable, while a strong Rh leaching takes place in the second one.
Resumo:
Platinum nanoparticles supported on titania efficiently catalyzed the diboration of alkynes and alkenes under solvent- and ligand-free conditions in air. The cis-1,2-diborylalkenes and 1,2-diborylalkanes were obtained in moderate to excellent yields following, in most cases, a simple filtration workup protocol. The versatility of the cis-1,2-diboronvinyl compounds was demonstrated in a series of organic transformations, including the Suzuki–Miyaura cross coupling and the boron–halogen exchange.
Resumo:
1-Benzyl-3-(2-hydroxy-2-phenylethyl)imidazolium chloride (5), which is a precursor of an N-heterocyclic carbene ligand, in combination with palladium acetate, has been employed as an effective catalyst for the fluorine-free Hiyama reaction. A systematic study of the catalytic mixture, by a 32 factorial design, has revealed that both the amount of palladium and the Pd/NHC precursor ratio are important factors for obtaining good yields of the coupling products, indicating an interaction between them. The best catalytic system involves mixing 0.1 mol-% palladium acetate in a 1:5 ratio (Pd/salt 5), which allows the effective coupling of a range of aryl bromides and chlorides with trimethoxy(phenyl)silane. The Hiyama reactions are carried out in NaOH solution (50 % H2O w/w), at 120 °C under microwave irradiation during 60 min.
Resumo:
The treatment of [PdCl2(COD)] (COD = 1,5-cyclooctadiene) with 1 and 2 equivalents of 2-(diphenylphosphino)benzaldehyde oxime in dichloromethane at room temperature led to the selective formation of [PdCl2{κ2-(P,N)-2-Ph2PC6H4CH[double bond, length as m-dash]NOH}] (1) and [Pd{κ2-(P,N)-2-Ph2PC6H4CH[double bond, length as m-dash]NOH}2][Cl]2 (2), respectively, which represent the first examples of Pd(II) complexes containing a phosphino-oxime ligand. These compounds, whose structures were fully confirmed by X-ray diffraction methods, were active in the catalytic rearrangement of aldoximes. In particular, using 5 mol% complex 1, a large variety of aldoximes could be cleanly converted into the corresponding primary amides at 100 °C, employing water as solvent and without the assistance of any cocatalyst. Palladium nanoparticles are the active species in the rearrangement process. In addition, when the same reactions were performed employing acetonitrile as solvent, selective dehydration of the aldoximes to form the respective nitriles was observed. For comparative purposes, the catalytic behaviour of an oxime-derived palladacyclic complex has also been briefly evaluated.
Resumo:
Gold nanoparticles supported on a polyacrylamide containing a phosphinite ligand have been synthesized and characterized using different techniques such as TEM, SEM, EDX, XPS, and solid UV analyses. The new material was successfully applied as a heterogeneous catalyst for the three-component A3 coupling of amines, aldehydes, and alkynes to give propargylamines. Reactions are performed in neat water at 80 °C with only 0.05 mol% catalyst loading. The heterogeneous catalyst is recyclable during seven consecutive runs with small decrease in activity.
Resumo:
Dihydronaphthalenes were oxyarylated with o-iodophenols, in PEG-400 at 140 or 170 °C, leading regio- and stereoselectively to 5-carbapterocarpans. By using Pd(OAc)2 (5–10 mol%) as precatalyst and Ag2CO3 (1.1 equiv) as base (conditions A), products were obtained in good to excellent chemical yields, in 5–30 minutes, irrespective of the pattern of substitution the starting materials. Alternatively, when p-hydroxyacetophenone oxime derived palladacycle (1 mol%) was used as precatalyst, and dicyclohexylamine (2 equiv) was used as base (silver-free, conditions B), the corresponding adducts were obtained in moderate to good yields, in 0.5 to 4 hours. Finally, the oxyarylation of dihydronaphthalenes and chromenquinone with o-iodophenols and 3-iodolawsone in PEG-400 under conditions A led regio- and stereoselectively to the formation of carbapterocarpanquinones and pterocarpanquinones in moderate yield.