4 resultados para Bessel

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the existence of nondiffracting Bessel surface plasmon polaritons (SPPs), advancing at either superluminal or subluminal phase velocities. These wave fields feature deep subwavelength FWHM, but are supported by high-order homogeneous SPPs of a metal/dielectric (MD) superlattice. The beam axis can be relocated to any MD interface, by interfering multiple converging SPPs with controlled phase matching. Dissipative effects in metals lead to a diffraction-free regime that is limited by the energy attenuation length. However, the ultra-localization of the diffracted wave field might still be maintained by more than one order of magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent progress is emerging on nondiffracting subwavelength fields propagating in complex plasmonic nanostructures. In this paper, we present a thorough discussion on diffraction-free localized solutions of Maxwell’s equations in a periodic structure composed of nanowires. This self-focusing mechanism differs from others previously reported, which lie on regimes with ultraflat spatial dispersion. By means of the Maxwell–Garnett model, we provide a general analytical expression of the electromagnetic fields that can propagate along the direction of the cylinder’s axis, keeping its transverse waveform unaltered. Numerical simulations based on the finite element method support our analytical approach. In particular, moderate filling fractions of the metallic composite lead to nonresonant-plasmonic spots of light propagating with a size that remains far below the limit of diffraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the diffraction behavior of plasmonic Bessel beams propagating in metal-dielectric stratified materials and wire media. Our results reveal various regimes in which polarization singularities are selectively maintained. This polarization-pass effect can be controlled by appropriately setting the filling factor of the metallic inclusions and its internal periodic distribution. These results may have implications in the development of devices at the nanoscale level for manipulation of polarization and angular momentum of cylindrical vector beams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatially accelerating beams are non-diffracting beams whose intensity is localized along curvilinear trajectories, also incomplete circular trajectories, before diffraction broadening governs their propagation. In this paper we report on numerical simulations showing the conversion of a high-numerical-aperture focused beam into a nonparaxial shape-preserving accelerating beam having a beam-width near the diffraction limit. Beam shaping is induced near the focal region by a diffractive optical element that consists of a non-planar subwavelength grating enabling a Bessel signature.