3 resultados para Behaviour Patterns
em Universidad de Alicante
Resumo:
Comunicación presentada en el XVI Simposio Internacional de Turismo y Ocio, ESADE, 23 mayo 2007.
Resumo:
Various studies indicate that most of the slope instabilities affecting Flysch heterogeneous rock masses are related to differential weathering of the lithologies that make up the slope. Therefore, the weathering characteristics of the intact rock are of great importance for the study of these types of slopes and their associated instability processes. The main aim of this study is to characterise the weathering properties of the different lithologies outcropping in the carbonatic Flysch of Alicante (Spain), in order to understand the effects of environmental weathering on them, following slope excavation. To this end, 151 strata samples obtained from 11 different slopes, 5–40 years old, were studied. The lithologies were identified and their mechanical characteristics obtained using field and laboratory tests. Additionally, the slaking properties of intact rocks were determined, and a classification system proposed based on the first and fifth slake cycles (Id1 and Id5 respectively) and an Index of Weathering (IW5), defined in the study. Information obtained from the laboratory and the field was used to characterise the weathering behaviour of the rocks. Furthermore, the slaking properties determined from laboratory tests were related to the in-situ weathering properties of rocks (i.e., the weathering profile, patterns and length, and weathering rate). The proposed relationship between laboratory test results, field data, and in-situ observations provides a useful tool for predicting the response of slopes to weathering after excavation during the preliminary stages of design.
Resumo:
Many studies suggest that migratory birds are expected to travel more quickly during spring, when they are en route to the breeding grounds, in order to ensure a high-quality territory. Using data recorded by means of Global Positioning System satellite tags, we analysed at three temporal scales (hourly, daily and overall journey) seasonal differences in migratory performance of the booted eagle (Aquila pennata), a soaring raptor migrating between Europe and tropical Africa, taking into account environmental conditions such as wind, thermal uplift and day length. Unexpectedly, booted eagles showed higher travel rates (hourly speed, daily distance, overall migration speed and overall straightness) during autumn, even controlling for abiotic factors, probably thanks to higher hourly speeds, more straight routes and less non-travelling days during autumn. Tailwinds were the main environmental factor affecting daily distance. During spring, booted eagles migrated more quickly when flying over the Sahara desert. Our results raise new questions about which ecological and behavioural reasons promote such unexpected faster speeds in autumn and not during spring and how events occurring in very different regions can affect migratory performance, interacting with landscape characteristics, weather conditions and flight behaviour.