1 resultado para Bayesian statistical decision theory
em Universidad de Alicante
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (2)
- Academic Archive On-line (Jönköping University; Sweden) (2)
- Academic Archive On-line (Stockholm University; Sweden) (3)
- Academic Research Repository at Institute of Developing Economies (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (21)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (8)
- Aston University Research Archive (63)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (22)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (55)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (37)
- Brock University, Canada (13)
- Brunel University (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (13)
- CentAUR: Central Archive University of Reading - UK (74)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (15)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (75)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (9)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (6)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (17)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (20)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (25)
- DRUM (Digital Repository at the University of Maryland) (8)
- Duke University (10)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (3)
- Greenwich Academic Literature Archive - UK (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (2)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (13)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Massachusetts Institute of Technology (8)
- Memorial University Research Repository (2)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (3)
- Open University Netherlands (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (14)
- Repositório digital da Fundação Getúlio Vargas - FGV (15)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (38)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (8)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (14)
- Universidad Politécnica de Madrid (35)
- Universidade Complutense de Madrid (3)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universidade Metodista de São Paulo (3)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (12)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (55)
- Université de Montréal, Canada (19)
- University of Connecticut - USA (2)
- University of Michigan (18)
- University of Queensland eSpace - Australia (51)
- University of Southampton, United Kingdom (13)
- University of Washington (4)
- WestminsterResearch - UK (3)
Resumo:
Outliers are objects that show abnormal behavior with respect to their context or that have unexpected values in some of their parameters. In decision-making processes, information quality is of the utmost importance. In specific applications, an outlying data element may represent an important deviation in a production process or a damaged sensor. Therefore, the ability to detect these elements could make the difference between making a correct and an incorrect decision. This task is complicated by the large sizes of typical databases. Due to their importance in search processes in large volumes of data, researchers pay special attention to the development of efficient outlier detection techniques. This article presents a computationally efficient algorithm for the detection of outliers in large volumes of information. This proposal is based on an extension of the mathematical framework upon which the basic theory of detection of outliers, founded on Rough Set Theory, has been constructed. From this starting point, current problems are analyzed; a detection method is proposed, along with a computational algorithm that allows the performance of outlier detection tasks with an almost-linear complexity. To illustrate its viability, the results of the application of the outlier-detection algorithm to the concrete example of a large database are presented.