2 resultados para Base of the Pyramid

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. Yellow hypergiants represent a short-lived evolutionary episode experienced by massive stars as they transit to and from a red supergiant phase. As such, their properties provide a critical test of stellar evolutionary theory, while recent observations unexpectedly suggest that a subset may explode as Type II supernovae. Aims. The galactic yellow hypergiant IRC +10420 is a cornerstone system for understanding this phase since it is the strongest post-RSG candidate known, has demonstrated real-time evolution across the Hertzsprung-Russell diagram and been subject to extensive mass loss. In this paper we report on the discovery of a twin of IRC +10420 - IRAS 18357-0604. Methods. Optical and near-IR spectroscopy are used to investigate the physical properties of IRAS 18357-0604 and also provide an estimate of its systemic velocity, while near- to mid-IR photometry probes the nature of its circumstellar environment. Results. These observations reveal pronounced spectral similarities between IRAS 18357-0604 and IRC +10420, suggesting comparable temperatures and wind geometries. IR photometric data reveals a similarly dusty circumstellar environment, although historical mass loss appears to have been heavier in IRC +10420. The systemic velocity implies a distance compatible with the red supergiant-dominated complex at the base of the Scutum Crux arm; the resultant luminosity determination is consistent with a physical association but suggests a lower initial mass than inferred for IRC +10420 (≲20 M⊙ versus ~40 M⊙). Evolutionary predictions for the physical properties of supernova progenitors derived from ~18–20 M⊙ stars – or ~12–15 M⊙ stars that have experienced enhanced mass loss as red supergiants – compare favourably with those of IRAS 18357-0604, which in turn appears to be similar to the the progenitor of SN2011dh; it may therefore provide an important insight into the nature of the apparently H-depleted yellow hypergiant progenitors of some Type IIb SNe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Early Miocene Bisciaro Fm., a marly limestone succession cropping out widely in the Umbria–Romagna–Marche Apennines, is characterized by a high amount of volcaniclastic content, characterizing this unit as a peculiar event of the Adria Plate margin. Because of this volcaniclastic event, also recognizable in different sectors of the central-western Mediterranean chains, this formation is proposed as a “marker” for the geodynamic evolution of the area. In the Bisciaro Fm., the volcaniclastic supply starts with the “Raffaello” bed (Earliest Aquitanian) that marks the base of the formation and ends in the lower portion of the Schlier Fm. (Late Burdigalian–Langhian p.p.). Forty-one studied successions allowed the recognition of three main petrofacies: (1) Pyroclastic Deposits (volcanic materials more than 90 %) including the sub-petrofacies 1A, Vitroclastic/crystallo-vitroclastic tuffs; 1B, Bentonitic deposits; and 1C, Ocraceous and blackish layers; (2) Resedimented Syn-Eruptive Volcanogenic Deposits (volcanic material 30–90 %) including the sub-petrofacies 2A, High-density volcanogenic turbidites; 2B, Low-density volcanogenic turbidites; 2C, Crystal-rich volcanogenic deposits; and 2D, Glauconitic-rich volcaniclastites; (3) Mixing of Volcaniclastic Sediments with Marine Deposits (volcanic material 5–30 %, mixed with marine sediments: marls, calcareous marls, and marly limestones). Coeval volcaniclastic deposits recognizable in different tectonic units of the Apennines, Maghrebian, and Betic Chains show petrofacies and chemical–geochemical features related to a similar calc-alkaline magmatism. The characterization of this event led to the hypothesis of a co-genetic relationship between volcanic activity centres (primary volcanic systems) and depositional basins (depositional processes) in the Early Miocene palaeogeographic and palaeotectonic evolution of the central-western Mediterranean region. The results support the proposal of a geodynamic model of this area that considers previously proposed interpretations.