3 resultados para BORON-NITRIDE

em Universidad de Alicante


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A hydrogen economy is needed, in order to resolve current environmental and energy-related problems. For the introduction of hydrogen as an important energy vector, sophisticated materials are required. This paper provides a brief overview of the subject, with a focus on hydrogen storage technologies for mobile applications. The unique properties of hydrogen are addressed, from which its advantages and challenges can be derived. Different hydrogen storage technologies are described and evaluated, including compression, liquefaction, and metal hydrides, as well as porous materials. This latter class of materials is outlined in more detail, explaining the physisorption interaction which leads to the adsorption of hydrogen molecules and discussing the material characteristics which are required for hydrogen storage application. Finally, a short survey of different porous materials is given which are currently investigated for hydrogen storage, including zeolites, metal organic frameworks (MOFs), covalent organic frameworks (COFs), porous polymers, aerogels, boron nitride materials, and activated carbon materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We model the quantum Hall effect in heterostructures made of two gapped graphene stripes with different gaps, Δ1 and Δ2. We consider two main situations, Δ1=0,Δ2≠0, and Δ1=−Δ2. They are different in a fundamental aspect: only the latter features kink states that, when intervalley coupling is absent, are protected against backscattering. We compute the two-terminal conductance of heterostructures with channel length up to 430 nm, in two transport configurations, parallel and perpendicular to the interface. By studying the effect of disorder on the transport along the boundary, we quantify the robustness of kink states with respect to backscattering. Transport perpendicular to the boundary shows how interface states open a backscattering channel for the conducting edge states, spoiling the perfect conductance quantization featured by the homogeneously gapped graphene Hall bars. Our results can be relevant for the study of graphene deposited on hexagonal boron-nitride, as well as to model graphene with an interaction-driven gapped phase with two equivalent phases separated by a domain wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron-doped diamond electrodes have emerged as anodic material due to their high physical, chemical and electrochemical stability. These characteristics make it particularly interesting for electrochemical wastewater treatments and especially due to its high overpotential for the Oxygen Evolution Reaction. Diamond electrodes present the maximum efficiency in pollutant removal in water, just limited by diffusion-controlled electrochemical kinetics. Results are presented for the elimination of benzoic acid and for the electrochemical treatment of synthetic tannery wastewater. The results indicate that diamond electrodes exhibit the best performance for the removal of total phenols, COD, TOC, and colour.