3 resultados para BIS(IMINO)PYRIDYL IRON(II)

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspired by recent reports concerning the utilisation of hand drawn pencil macroelectrodes (PDEs), we report the fabrication, characterisation (physicochemical and electrochemical) and implementation (electrochemical sensing) of various PDEs drawn upon a flexible polyester substrate. Electrochemical characterisation reveals that there are no quantifiable electrochemical responses upon utilising these PDEs with an electroactive analyte that requires an electrochemical oxidation step first, therefore the PDEs have been examined towards the electroactive redox probes hexaammineruthenium(III) chloride, potassium ferricyanide and ammonium iron(II) sulfate. For the first time, characterisation of the number of drawn pencil layers and the grade of pencil are examined; these parameters are commonly overlooked when utilising PDEs. It is demonstrated that a PDE drawn ten times with a 6B pencil presented the most advantageous electrochemical platform, in terms of electrochemical reversibility and peak height/analytical signal. In consideration of the aforementioned limitation, analytes requiring an electrochemical reduction as the first process were solely analysed. We demonstrate the beneficial electroanalytical capabilities of these PDEs towards p-benzoquinone and the simultaneous detection of heavy metals, namely lead(II) and cadmium(II), all of which are explored for the first time utilising PDEs. Initially, the detection limits of this system were higher than desired for electroanalytical platforms, however upon implementation of the PDEs in a back-to-back configuration (in which two PDEs are placed back-to-back sharing a single connection to the potentiostat), the detection limits for lead(II) and cadmium(II) correspond to 10 μg L−1 and 98 μg L−1 respectively within model aqueous (0.1 M HCl) solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytically active heterogeneous catalysts have been prepared via microwave deposition of iron oxide nanoparticles (0.5–1.2 wt%) on MCM-41 type silica materials with different morphologies (particles, helical and spheres). This methodology leads to iron oxide nanoparticles composed by a mixture of FeO and Fe2O3 species, being the Fe(II)/Fe(III) peak ratio near to 1.11 by XPS. DRUV spectroscopy indicates the presence of tetrahedral coordinated Fe3+ in the silica framework of the three catalysts as well as some extraframework iron species in the catalysts with particle and sphere-like morphologies. The loading of the nanoparticles does neither affect the mesopore arrangement nor the textural properties of the silica supports, as indicated by SAXS and nitrogen adsorption/desorption isotherms. A detailed investigation of the morphology of the supports in various microwave-assisted catalyzed processes shows that helical mesostructures provide optimum catalytic activities and improved reusabilities in the microwave-assisted redox (selective oxidation of benzyl alcohol) catalyzed process probably due to a combination of lower particle size and higher acidity in comparison with the supports with particle and sphere morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chiral complexes formed by privileged phosphoramidites derived from chiral binol and optically pure Davies’ amines, and copper(II) triflate, silver(I) triflate or silver(I) benzoate are excellent catalysts for the general 1,3-dipolar cycloaddition between nitroalkenes and azomethine ylides generated from α-amino acid derived imino esters. These three methods can be conducted at room temperature to afford the exo-cycloadducts (4,5-trans-2,5-cis-4-nitroprolinates) with high diastereoselectivity and high enantioselectivity. In general, the three procedures are complementary but silver catalysts are more versatile and less sensitive to sterically congested starting materials.