4 resultados para BIODIVERSITY HOTSPOTS
em Universidad de Alicante
Resumo:
Background. The extraction of salt from seawater by means of coastal solar salterns is a very well-described process. Moreover, the characterization of these environments from ecological, biochemical and microbiological perspectives has become a key focus for many research groups all over the world over the last 20 years. In countries such as Spain, there are several examples of coastal solar salterns (mainly on the Mediterranean coast) and inland solar salterns, from which sodium chloride is obtained for human consumption. However, studies focused on the characterization of inland solar salterns are scarce and both the archaeal diversity and the plant communities inhabiting these environments remain poorly described. Results. Two of the inland solar salterns (termed Redonda and Penalva), located in the Alto Vinalopó Valley (Alicante, Spain), were characterized regarding their geological and physico-chemical characteristics and their archaeal and botanical biodiversity. A preliminary eukaryotic diversity survey was also performed using saline water. The chemical characterization of the brine has revealed that the salted groundwater extracted to fill these inland solar salterns is thalassohaline. The plant communities living in this environment are dominated by Sarcocornia fruticosa (L.) A.J. Scott, Arthrocnemum macrostachyum (Moris) K. Koch, Suaeda vera Forsk. ex Gmelin (Amaranthaceae) and several species of Limonium (Mill) and Tamarix (L). Archaeal diversity was analyzed and compared by polymerase chain reaction (PCR)-based molecular phylogenetic techniques. Most of the sequences recovered from environmental DNA samples are affiliated with haloarchaeal genera such as Haloarcula, Halorubrum, Haloquadratum and Halobacterium, and with an unclassified member of the Halobacteriaceae. The eukaryote Dunaliella was also present in the samples. Conclusions. To our knowledge, this study constitutes the first analysis centered on inland solar salterns located in the southeastern region of Spain. The results obtained revealed that the salt deposits of this region have marine origins. Plant communities typical of salt marshes are present in this ecosystem and members of the Halobacteriaceae family can be easily detected in the microbial populations of these habitats. Possible origins of the haloarchaea detected in this study are discussed.
Resumo:
The present work reports on the extended distribution of nineteen species in the Mediterranean. These are: Upeneus pori (Fish:Turkey), Bursatella leachii (Mollusca, Opisthobranchia: eastern coast of Spain), Sparisoma cretense (Fish: Ionian coast of Greece), Pseudobryopsis myura (Chlorophyta:Turkey), Aplysia dactylomela (Mollusca, Opisthobranchia: Karpathos island, and Kyklades Archipelago, Greece), Asparagopsis armata and Botryocladia madagascariensis (Rhodophyta: South Peloponnesos, Greece), Oxynotus centrina (Fish: Greece), Caulerpa racemosa var. cylindracea (Chlorophyta ), Stypopodium schimperi (Phaeophyta ) Siganus luridus and Stephanolepis diaspros (Fish) Percnon gibbesi (Decapoda, Brachyura) (Kyklades Archipelago, Greece), Cerithium scabridum (Mollusca, Prosobranchia: Anavissos: Greece) and Cerithium renovatum (Mollusca, Prosobranchia: N. Κriti), Cassiopea andromeda (Scyphomedusa: Rhodos Island, Greece), Abra tenuis (Mollusca Bivalvia: Vouliagmeni Lake, Greece) Lagocephalus lagocephalus (Fish: Calabrian coast, Italy) and Plocamopherus ocellatus (Mollusca, Opisthobranchia: İskenderun Bay, Turkey).
Resumo:
The high rate of amphibian endemism and the severe habitat modification in the Caribbean islands make them an ideal place to test if the current protected areas network might protect this group. In this study, we model distribution and map species richness of the 40 amphibian species from eastern Cuba with the objectives of identify hotspots, detect gaps in species representation in protected areas, and select additional areas to fill these gaps. We used two modeling methods, Maxent and Habitat Suitability Models, to reach a consensus distribution map for each species, then calculate species richness by combining specific models and finally performed gap analyses for species and hotspots. Our results showed that the models were robust enough to predict species distributions and that most of the amphibian hotspots were represented in reserves, but 50 percent of the species were incompletely covered and Eleutherodactylus rivularis was totally uncovered by the protected areas. We identified 1441 additional km2 (9.9% of the study area) that could be added to the current protected areas, allowing the representation of every species and all hotspots. Our results are relevant for the conservation planning in other Caribbean islands, since studies like this could contribute to fill the gaps in the existing protected areas and to design a future network. Both cases would benefit from modeling amphibian species distribution using available data, even if they are incomplete, rather than relying only in the protection of known or suspected hotspots.
Resumo:
Data are provided on two hoverfly species new to the Iberian Peninsula, Brachyopa grunewaldensis Kassebeer and Criorhina floccosa (Meigen), and one new to Spain, Eumerus consimilis Šimić & Vujić. New habitat and breeding data are presented.