2 resultados para Automatic test pattern generation (ATPG)

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, Twitter has become one of the most important microblogging services of the Web 2.0. Among the possible uses it allows, it can be employed for communicating and broadcasting information in real time. The goal of this research is to analyze the task of automatic tweet generation from a text summarization perspective in the context of the journalism genre. To achieve this, different state-of-the-art summarizers are selected and employed for producing multi-lingual tweets in two languages (English and Spanish). A wide experimental framework is proposed, comprising the creation of a new corpus, the generation of the automatic tweets, and their assessment through a quantitative and a qualitative evaluation, where informativeness, indicativeness and interest are key criteria that should be ensured in the proposed context. From the results obtained, it was observed that although the original tweets were considered as model tweets with respect to their informativeness, they were not among the most interesting ones from a human viewpoint. Therefore, relying only on these tweets may not be the ideal way to communicate news through Twitter, especially if a more personalized and catchy way of reporting news wants to be performed. In contrast, we showed that recent text summarization techniques may be more appropriate, reflecting a balance between indicativeness and interest, even if their content was different from the tweets delivered by the news providers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rock mass characterization requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in Light Detection and Ranging (LiDAR) instrumentation currently allow quick and accurate 3D data acquisition, yielding on the development of new methodologies for the automatic characterization of rock mass discontinuities. This paper presents a methodology for the identification and analysis of flat surfaces outcropping in a rocky slope using the 3D data obtained with LiDAR. This method identifies and defines the algebraic equations of the different planes of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test, finding principal orientations by Kernel Density Estimation and identifying clusters by the Density-Based Scan Algorithm with Noise. Different sources of information —synthetic and 3D scanned data— were employed, performing a complete sensitivity analysis of the parameters in order to identify the optimal value of the variables of the proposed method. In addition, raw source files and obtained results are freely provided in order to allow to a more straightforward method comparison aiming to a more reproducible research.