3 resultados para Architecture of Iran
em Universidad de Alicante
Resumo:
In this paper, a proposal of a multi-modal dialogue system oriented to multilingual question-answering is presented. This system includes the following ways of access: voice, text, avatar, gestures and signs language. The proposal is oriented to the question-answering task as a user interaction mechanism. The proposal here presented is in the first stages of its development phase and the architecture is presented for the first time on the base of the experiences in question-answering and dialogues previously developed. The main objective of this research work is the development of a solid platform that will permit the modular integration of the proposed architecture.
Resumo:
In this paper we present the enrichment of the Integration of Semantic Resources based in WordNet (ISR-WN Enriched). This new proposal improves the previous one where several semantic resources such as SUMO, WordNet Domains and WordNet Affects were related, adding other semantic resources such as Semantic Classes and SentiWordNet. Firstly, the paper describes the architecture of this proposal explaining the particularities of each integrated resource. After that, we analyze some problems related to the mappings of different versions and how we solve them. Moreover, we show the advantages that this kind of tool can provide to different applications of Natural Language Processing. Related to that question, we can demonstrate that the integration of semantic resources allows acquiring a multidimensional vision in the analysis of natural language.
Resumo:
The evolution of CRISPR–cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR–cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR–Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.