2 resultados para Architecture - Tropical conditions

em Universidad de Alicante


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information Technology and Communications (ICT) is presented as the main element in order to achieve more efficient and sustainable city resource management, while making sure that the needs of the citizens to improve their quality of life are satisfied. A key element will be the creation of new systems that allow the acquisition of context information, automatically and transparently, in order to provide it to decision support systems. In this paper, we present a novel distributed system for obtaining, representing and providing the flow and movement of people in densely populated geographical areas. In order to accomplish these tasks, we propose the design of a smart sensor network based on RFID communication technologies, reliability patterns and integration techniques. Contrary to other proposals, this system represents a comprehensive solution that permits the acquisition of user information in a transparent and reliable way in a non-controlled and heterogeneous environment. This knowledge will be useful in moving towards the design of smart cities in which decision support on transport strategies, business evaluation or initiatives in the tourism sector will be supported by real relevant information. As a final result, a case study will be presented which will allow the validation of the proposal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies suggest that migratory birds are expected to travel more quickly during spring, when they are en route to the breeding grounds, in order to ensure a high-quality territory. Using data recorded by means of Global Positioning System satellite tags, we analysed at three temporal scales (hourly, daily and overall journey) seasonal differences in migratory performance of the booted eagle (Aquila pennata), a soaring raptor migrating between Europe and tropical Africa, taking into account environmental conditions such as wind, thermal uplift and day length. Unexpectedly, booted eagles showed higher travel rates (hourly speed, daily distance, overall migration speed and overall straightness) during autumn, even controlling for abiotic factors, probably thanks to higher hourly speeds, more straight routes and less non-travelling days during autumn. Tailwinds were the main environmental factor affecting daily distance. During spring, booted eagles migrated more quickly when flying over the Sahara desert. Our results raise new questions about which ecological and behavioural reasons promote such unexpected faster speeds in autumn and not during spring and how events occurring in very different regions can affect migratory performance, interacting with landscape characteristics, weather conditions and flight behaviour.