4 resultados para Approach that generates sense
em Universidad de Alicante
Resumo:
In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.
Resumo:
This study aims to analyze how middle-level health systems’ managers understand the integration of a health care response to intimate partner violence (IPV) within the Spanish health system. Data were obtained through 26 individual interviews with professionals in charge of coordinating the health care response to IPV within the 17 regional health systems in Spain. The transcripts were analyzed following grounded theory in accordance with the constructivist approach described by Charmaz. Three categories emerged, showing the efforts and challenges to integrate a health care response to IPV within the Spanish health system: “IPV is a complex issue that generates activism and/or resistance,” “The mandate to integrate a health sector response to IPV: a priority not always prioritized,” and “The Spanish health system: respectful with professionals’ autonomy and firmly biomedical.” The core category, “Developing diverse responses to IPV integration,” crosscut the three categories and encompassed the range of different responses that emerge when a strong mandate to integrate a health care response to IPV is enacted. Such responses ranged from refraining to deal with the issue to offering a women-centered response. Attempting to integrate a response to nonbiomedical health problems as IPV into health systems that remain strongly biomedicalized is challenging and strongly dependent both on the motivation of professionals and on organizational factors. Implementing and sustaining changes in the structure and culture of the health care system are needed if a health care response to IPV that fulfills the World Health Organization guidelines is to be ensured.
Resumo:
Integrative taxonomy tests the validity of taxa using methods additional to traditional morphology. The existence of two different morphotypes in specimens identified as Chrysotoxum vernale Loew (Diptera: Syrphidae) prompted their taxonomic study using an integrative approach that included morphology, wing and male-surstylus geometric morphometrics, genetic and ecological analyses. As a result, a new species is recognised, Chrysotoxum montanum Nedeljković & Vujić sp. nov., and C. vernale is re-defined. A lectotype and paralectotypes are designated for C. vernale to stabilize this concept. An additional species, Chrysotoxum orthostylum Vujić sp. nov., with distinctive male genitalia is also described. The three species share an antenna with the basoflagellomere shorter than the scape plus pedicel and terga with yellow fasciae not reaching the lateral margins. This study confirms the value of integrative approach for resolving species boundaries.
Resumo:
This work considers the crystallisation mechanisms of the most common and aggressive salts that generate stress in porous building stones as a result of changing ambient conditions. These mechanisms include the salt crystallisation that result from decreasing relative humidity and changes in temperature and, in hydrated salts, the dissolution of the lower hydrated form and the subsequent precipitation of the hydrated salt. We propose a new methodology for thermodynamic calculations using PHREEQC that includes these crystallisation mechanisms. This approach permits the calculation of the equilibrium relative humidity and the parameterization of the critical relative humidity and crystallisation pressures for the dissolution–precipitation transitions. The influence of other salts on the effectives of salt crystallisation and chemical weathering is also assessed. We review the sodium and magnesium sulphate and sodium chloride systems, in both single and multicomponent solutions, and they are compared to the sodium carbonate and calcium carbonate systems. The variation of crystallisation pressure, the formation of new minerals and the chemical dissolution by the presence of other salts is also evaluated. Results for hydrated salt systems show that high crystallisation pressures are possible as lower hydrated salts dissolve and more hydrated salts precipitate. High stresses may be also produced by decreasing temperature, although it requires that porous materials are wet for long periods of time. The presence of other salts changes the temperature and relative humidity of salt transitions that generates stress rather than reducing the pressure of crystallisation, if any salt has previously precipitated. Several practical conclusions derive from proposed methodology and provide conservators and architects with information on the potential weathering activity of soluble salts. Furthermore, the model calculations might be coupled with projections of future climate to give as improved understanding of the likely changes in the frequency of phase transitions in salts within porous stone.