7 resultados para Anthraquinone dyes
em Universidad de Alicante
Resumo:
Applied colorimetry is an important module in the program of the elective subject "Colour Science: industrial applications”. This course is taught in the Optics and Optometry Degree and it has been used as a testing for the application of new teaching and assessment techniques consistent with the new European Higher Education Area. In particular, the main objective was to reduce the attendance to lessons and encourage the individual and collective work of students. The reason for this approach is based on the idea that students are able to work at their own learning pace. Within this dynamic work, we propose online lab practice based on Excel templates that our research group has developed ad-hoc for different aspects of colorimetry, such as conversion to different colour spaces, calculation of perceptual descriptors (hue, saturation, lightness), calculation of colour differences, colour matching dyes, etc. The practice presented in this paper is focused on the learning of colour differences. The session is based on a specific Excel template to compute the colour differences and to plot different graphs with these colour differences defined at different colour spaces: CIE ΔE, CIE ΔE94 and the CIELAB colour space. This template is implemented on a website what works by addressing the student work at a proper and organized way. The aim was to unify all the student work from a website, therefore the student is able to learn in an autonomous and sequential way and in his own pace. To achieve this purpose, all the tools, links and documents are collected for each different proposed activity to achieve guided specific objectives. In the context of educational innovation, this type of website is normally called WebQuest. The design of a WebQuest is established according to the criteria of usability and simplicity. There are great advantages of using WebQuests versus the toolbox “Campus Virtual” available in the University of Alicante. The Campus Virtual is an unfriendly environment for this specific purpose as the activities are organized in different sectors depending on whether the activity is a discussion, an activity, a self-assessment or the download of materials. With this separation, it is more difficult that the student follows an organized sequence. However, our WebQuest provides a more intuitive graphical environment, and besides, all the tasks and resources needed to complete them are grouped and organized according to a linear sequence. In this way, the student guided learning is optimized. Furthermore, with this simplification, the student focuses on learning and not to waste resources. Finally, this tool has a wide set of potential applications: online courses of colorimetry applied for postgraduate students, Open Course Ware, etc.
Resumo:
Purpose – This research deals with a new kind of nanopigment, obtained from the combination of organic dyes and layered nanoclays, that the authors call nanoclay-colorant pigment (NCP). Whilst they have already been employed in inks and coatings, to date these nanopigments have not been used as pigments for polymers. The existing lack of knowledge surrounding them must be redressed in order to bridge the gap between current academic studies and commercial exploitation. Therefore, the main purpose of this paper is to examine the hitherto unknown aspects of the NCP, which relate specifically to their applicability as a new type of colorant for polymers. Design/methodology/approach – A blue NCP has been prepared at the laboratory according to the patented method of synthesis (patent WO0104216), using methylene blue and montmorillonite nanoclay. It has then been applied to a thermoplastic polymer (linear low-density polyethylene – LLDPE) to obtain a coloured sample. Furthermore, samples with the same polymer but using conventional blue colorants have been prepared under the same processing conditions. The mechanical, thermal and colorimetric properties of these materials have been compared. Findings – The thermal stability of the sample coloured with NCP is reduced to some extent, while the mechanical strength is slightly increased. Moreover, this sample has better colour performance than the conventionally pigmented samples. Originality/value – In this paper, a blue NCP has been synthesised and successfully employed with polyethylene and the obtained sample shows better colour performance than polyethylene with conventional pigments.
Resumo:
The present study aims to inventory and analyse the ethnobotanical knowledge about medicinal plants in the Serra de Mariola Natural Park. In respect to traditional uses, 93 species reported by local informants were therapeutic, 27 food, 4 natural dyes and 13 handcrafts. We developed a methodology that allowed the location of individuals or vegetation communities with a specific popular use. We prepared a geographic information system (GIS) that included gender, family, scientific nomenclature and common names in Spanish and Catalan for each species. We also made a classification of 39 medicinal uses from ATC (Anatomical, Therapeutic, Chemical classification system). Labiatae (n=19), Compositae (n=9) and Leguminosae (n=6) were the families most represented among the plants used to different purposes in humans. Species with the most elevated cultural importance index (CI) values were Thymus vulgaris (CI=1.431), Rosmarinus officinalis (CI=1.415), Eryngium campestre (CI=1.325), Verbascum sinuatum (CI=1.106) and Sideritis angustifolia (CI=1.041). Thus, the collected plants with more therapeutic uses were: Lippia triphylla (12), Thymus vulgaris and Allium roseum (9) and Erygium campestre (8). The most repeated ATC uses were: G04 (urological use), D03 (treatment of wounds and ulcers) and R02 (throat diseases). These results were in a geographic map where each point represented an individual of any species. A database was created with the corresponding therapeutic uses. This application is useful for the identification of individuals and the selection of species for specific medicinal properties. In the end, knowledge of these useful plants may be interesting to revive the local economy and in some cases promote their cultivation.
Resumo:
In this study, a new type of nanopigment, obtained from a nanoclay (NC) and a dye, was synthesized in the laboratory, and these nanopigments were used to color an ethylene vinyl acetate (EVA) copolymer. Several of these nanoclay-based pigments (NCPs) were obtained through variations in the cation exchange capacity (CEC) percentage of the NC exchanged with the dye and also including an ammonium salt. Composites of EVA and different amounts of the as-synthesized nanopigments were prepared in a melt-intercalation process. Then, the morphological, mechanical, thermal, rheological, and colorimetric properties of the samples were assessed. The EVA/NCP composites developed much better color properties than the samples containing only the dye, especially when both the dye and the ammonium salt were exchanged with NC. Their other properties were similar to those of more conventional EVA/NC composites.
Resumo:
In this study, a novel kind of hybrid pigment based on nanoclays and dyes was synthesized and characterized. These nanoclay-based pigments (NCPs) were prepared at the laboratory with sodium montmorillonite nanoclay (NC) and methylene blue (MB). The cation-exchange capacity of NC exchanged with MB was varied to obtain a wide color gamut. The synthesized nanopigments were thoroughly characterized. The NCPs were melt-mixed with linear low-density polyethylene (PE) with an internal mixer. Furthermore, samples with conventional colorants were prepared in the same way. Then, the properties (mechanical, thermal, and colorimetric) of the mixtures were assessed. The PE–NCP samples developed better color properties than those containing conventional colorants and used as references, and their other properties were maintained or improved, even at lower contents of dye compared to that with the conventional colorants.
Resumo:
Natural anthocyanin pigments/dyes and phenolic copigments/co-dyes form noncovalent complexes, which stabilize and modulate (in particular blue, violet, and red) colors in flowers, berries, and food products derived from them (including wines, jams, purees, and syrups). This noncovalent association and their electronic and optical implications constitute the copigmentation phenomenon. Over the past decade, experimental and theoretical studies have enabled a molecular understanding of copigmentation. This review revisits this phenomenon to provide a comprehensive description of the nature of binding (the dispersion and electrostatic components of π–π stacking, the hydrophobic effect, and possible hydrogen-bonding between pigment and copigment) and of spectral modifications occurring in copigmentation complexes, in which charge transfer plays an important role. Particular attention is paid to applications of copigmentation in food chemistry.
Resumo:
Biopolymers do not have competitive prices, which has prevented their industrial exploitation on a global scale so far. In this context, Using nanoclays, improvements in certain biopolymer properties, mainly mechanical and thermal, have been achieved. However, research has been much less focused on changing optical properties through the incorporation of nanoclays. At the same time, current research has focused on obtaining nanopigments, by organic dyes adsoptions into different nanoclays in order to achieve sustainable colouring and high performance materials. By combining advances in these lines of research, biodegradable composites with optimal mechanical and optical properties can be obtained. The aim of this work is to find the optimal formulation of naturally sourced nanopigments, incorporate them into a biological origin epoxy resin, and obtain a significant improvement in their mechanical, and optical properties. We combine three structural modifiers in the nanopigment synthesis: surfactant, silane and mordant salt. The latter was selected in order to replicate the mordant textile dyeing with natural dyes. Using a Taguchi’s desing L8, we look for the effect of the presence of the modifiers, the pH acidification, and the interactions effect between the synthesis factors. Three natural dyes were selected: chlorophyll, beta-carotene, and beetroot extract. Furthermore we use two kinds of laminar nanoclays, differentiated by the ion exchange charge: montmorillonite, and hydrotalcite. Then the thermal, mechanical and colorimetric characterization of the bionanocomposite materials was carried out. The optimal conditions to obtain the best bionanocomposite materials are using acid pH, and modifying the nanoclays with mordant and surfactant.