2 resultados para Anatomical Therapeutic Chemical

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aims to inventory and analyse the ethnobotanical knowledge about medicinal plants in the Serra de Mariola Natural Park. In respect to traditional uses, 93 species reported by local informants were therapeutic, 27 food, 4 natural dyes and 13 handcrafts. We developed a methodology that allowed the location of individuals or vegetation communities with a specific popular use. We prepared a geographic information system (GIS) that included gender, family, scientific nomenclature and common names in Spanish and Catalan for each species. We also made a classification of 39 medicinal uses from ATC (Anatomical, Therapeutic, Chemical classification system). Labiatae (n=19), Compositae (n=9) and Leguminosae (n=6) were the families most represented among the plants used to different purposes in humans. Species with the most elevated cultural importance index (CI) values were Thymus vulgaris (CI=1.431), Rosmarinus officinalis (CI=1.415), Eryngium campestre (CI=1.325), Verbascum sinuatum (CI=1.106) and Sideritis angustifolia (CI=1.041). Thus, the collected plants with more therapeutic uses were: Lippia triphylla (12), Thymus vulgaris and Allium roseum (9) and Erygium campestre (8). The most repeated ATC uses were: G04 (urological use), D03 (treatment of wounds and ulcers) and R02 (throat diseases). These results were in a geographic map where each point represented an individual of any species. A database was created with the corresponding therapeutic uses. This application is useful for the identification of individuals and the selection of species for specific medicinal properties. In the end, knowledge of these useful plants may be interesting to revive the local economy and in some cases promote their cultivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.