4 resultados para Analysis of Algorithms and Problem Complexity
em Universidad de Alicante
Resumo:
This study analyses the relationship between self-reported social anxiety and academic performance in a sample of 1,616 Spanish students (52.1% males) in compulsory secondary education, aged 12 to 16 years old. Social anxiety was assessed by the Social Phobia and Anxiety Inventory (SPAI) and academic performance was measured with school grades and failing grades. Results reveal that adolescents with social anxiety show a similar academic performance to adolescents without social anxiety. Although t tests found some significant differences in academic grades and number of failing grades, the effect size analysis showed that these differences had no empirical relevance. These findings are discussed considering the gender and grade levels and their theoretical and practical implication.
Resumo:
The aim of this study is to analyse the physical and physiological factors in soccer training at different categories of training. The participants were 30 soccer players of 8-aside soccer in the under 10’s age group (9.93±0.25 years) who participated in the under 10 Provincial Tournament in Alicante. During training, the variables of covered distance, heart rate, speed (average and maximum values) as well as the methodology used and position were registered. After the statistical analysis and its related discussion, it was concluded that the players do not show differences in the covered total distance in relation to the category. Notwithstanding, there are differences with regards to speed and heart rate, which are caused by the greater physical development of the players in comparison to the under10’s age group category. Regarding the methodology employed, it is worth stressing that the coaches used, to a greater extend, the global method, followed by the mixed method.
Resumo:
PURPOSE: To evaluate and compare the visual, refractive, contrast sensitivity, and aberrometric outcomes with a diffractive bifocal and trifocal intraocular lens (IOL) of the same material and haptic design. METHODS: Sixty eyes of 30 patients undergoing bilateral cataract surgery were enrolled and randomly assigned to one of two groups: the bifocal group, including 30 eyes implanted with the bifocal diffractive IOL AT LISA 801 (Carl Zeiss Meditec, Jena, Germany), and the trifocal group, including eyes implanted with the trifocal diffractive IOL AT LISA tri 839 MP (Carl Zeiss Meditec). Analysis of visual and refractive outcomes, contrast sensitivity, ocular aberrations (OPD-Scan III; Nidek, Inc., Gagamori, Japan), and defocus curve were performed during a 3-month follow-up period. RESULTS: No statistically significant differences between groups were found in 3-month postoperative uncorrected and corrected distance visual acuity (P > .21). However, uncorrected, corrected, and distance-corrected near and intermediate visual acuities were significantly better in the trifocal group (P < .01). No significant differences between groups were found in postoperative spherical equivalent (P = .22). In the binocular defocus curve, the visual acuity was significantly better for defocus of -0.50 to -1.50 diopters in the trifocal group (P < .04) and -3.50 to -4.00 diopters in the bifocal group (P < .03). No statistically significant differences were found between groups in most of the postoperative corneal, internal, and ocular aberrations (P > .31), and in contrast sensitivity for most frequencies analyzed (P > .15). CONCLUSIONS: Trifocal diffractive IOLs provide significantly better intermediate vision over bifocal IOLs, with equivalent postoperative levels of visual and ocular optical quality.
Resumo:
Context. The Gaia-ESO Public Spectroscopic Survey is obtaining high-quality spectroscopy of some 100 000 Milky Way stars using the FLAMES spectrograph at the VLT, down to V = 19 mag, systematically covering all the main components of the Milky Way and providing the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. Observations of young open clusters, in particular, are giving new insights into their initial structure, kinematics, and their subsequent evolution. Aims. This paper describes the analysis of UVES and GIRAFFE spectra acquired in the fields of young clusters whose population includes pre-main sequence (PMS) stars. The analysis is applied to all stars in such fields, regardless of any prior information on membership, and provides fundamental stellar atmospheric parameters, elemental abundances, and PMS-specific parameters such as veiling, accretion, and chromospheric activity. Methods. When feasible, different methods were used to derive raw parameters (e.g. line equivalent widths) fundamental atmospheric parameters and derived parameters (e.g. abundances). To derive some of these parameters, we used methods that have been extensively used in the past and new ones developed in the context of the Gaia-ESO survey enterprise. The internal precision of these quantities was estimated by inter-comparing the results obtained by these different methods, while the accuracy was estimated by comparison with independent external data, such as effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. A validation procedure based on these comparisons was applied to discard spurious or doubtful results and produce recommended parameters. Specific strategies were implemented to resolve problems of fast rotation, accretion signatures, chromospheric activity, and veiling. Results. The analysis carried out on spectra acquired in young cluster fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. These include targets in the fields of the ρ Oph, Cha I, NGC 2264, γ Vel, and NGC 2547 clusters. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide stellar parameters with confidence for the much larger GIRAFFE sample. Precisions are estimated to be ≈120 K rms in Teff, ≈0.3 dex rms in log g, and ≈0.15 dex rms in [Fe/H] for the UVES and GIRAFFE setups.