2 resultados para AmpliSeq Custom Panel

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the analytical models devoted to determine the acoustic properties of a rigid perforated panel consider the acoustic impedance of a single hole and then use the porosity to determine the impedance for the whole panel. However, in the case of not homogeneous hole distribution or more complex configurations this approach is no longer valid. This work explores some of these limitations and proposes a finite element methodology that implements the linearized Navier Stokes equations in the frequency domain to analyse the acoustic performance under normal incidence of perforated panel absorbers. Some preliminary results for a homogenous perforated panel show that the sound absorption coefficient derived from the Maa analytical model does not match those from the simulations. These differences are mainly attributed to the finite geometry effect and to the spatial distribution of the perforations for the numerical case. In order to confirm these statements, the acoustic field in the vicinities of the perforations is analysed for a more complex configuration of perforated panel. Additionally, experimental studies are carried out in an impedance tube for the same configuration and then compared to previous methods. The proposed methodology is shown to be in better agreement with the laboratorial measurements than the analytical approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes a novel spectral LED-based tunable light source used for customized lighting solutions, especially for the reconstruction of CIE (Commission Internationale de l’Éclairage) standard illuminants. The light source comprises 31 spectral bands ranging from 400 to 700 nm, an integrating cube and a control board with a 16-bit resolution. A minimization algorithm to calculate the weighting values for each channel was applied to reproduce illuminants with precision. The differences in spectral fitting and colorimetric parameters showed that the reconstructed spectra were comparable to the standard, especially for the D65, D50, A and E illuminants. Accurate results were also obtained for illuminants with narrow peaks such as fluorescents (F2 and F11) and a high-pressure sodium lamp (HP1). In conclusion, the developed spectral LED-based light source and the minimization algorithm are able to reproduce any CIE standard illuminants with a high spectral and colorimetric accuracy able to advance available custom lighting systems useful in the industry and other fields such as museum lighting.