9 resultados para Alysidal set

em Universidad de Alicante


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose – Deontical impure systems are systems whose object set is formed by an s-impure set, whose elements are perceptuales significances (relative beings) of material and/or energetic objects (absolute beings) and whose relational set is freeways of relations, formed by sheaves of relations going in two-way directions and at least one of its relations has deontical properties such as permission, prohibition, obligation and faculty. The paper aims to discuss these issues. Design/methodology/approach – Mathematical and logical development of human society ethical and normative structure. Findings – Existence of relations with positive imperative modality (obligation) would constitute the skeleton of the system. Negative imperative modality (prohibition) would be the immunological system of protection of the system. Modality permission the muscular system, that gives the necessary flexibility. Four theorems have been formulated based on Gödel's theorem demonstrating the inconsistency or incompleteness of DISs. For each constructed systemic conception can happen to it one of the two following things: either some allowed responses are not produced or else some forbidden responses are produced. Responses prohibited by the system are defined as nonwished effects. Originality/value – This paper is a continuation of the four previous papers and is developed the theory of deontical impure systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Semiotic components in the relations of complex systems depend on the Subject. There are two main semiotic components: Neutrosophic and Modal. Modal components are alethical and deontical. In this paper the authors applied the theory of Neutrosophy and Modal Logic to Deontical Impure Systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – This paper aims to refer to a subjective approach to a type of complex system: human ecosystems, referred to as deontical impure systems (DIS) to capture a set of properties fundamental to the distinction between human and natural ecosystems. There are four main phenomenological components: directionality, intensity, connection energy and volume. The paper establishes thermodynamics of deontical systems based on the Law of Zipf and the temperature of information. Design/methodology/approach – Mathematical and logical development of human society structure. Findings – A fundamental question in this approach to DIS is the intensity or forces of a relation. Concepts are introduced as the system volume and propose a system thermodynamic theory. It hints at the possibility of adapting the fractal theory by introducing the fractal dimension of the system. Originality/value – This paper is a continuation of other previous papers and developing the theory of DIS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with stability properties of the feasible set of linear inequality systems having a finite number of variables and an arbitrary number of constraints. Several types of perturbations preserving consistency are considered, affecting respectively, all of the data, the left-hand side data, or the right-hand side coefficients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we give an example of a nonlattice self-similar fractal string such that the set of real parts of their complex dimensions has an isolated point. This proves that, in general, the set of dimensions of fractality of a fractal string is not a perfect set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we deal with parameterized linear inequality systems in the n-dimensional Euclidean space, whose coefficients depend continuosly on an index ranging in a compact Hausdorff space. The paper is developed in two different parametric settings: the one of only right-hand-side perturbations of the linear system, and that in which both sides of the system can be perturbed. Appealing to the backgrounds on the calmness property, and exploiting the specifics of the current linear structure, we derive different characterizations of the calmness of the feasible set mapping, and provide an operative expresion for the calmness modulus when confined to finite systems. In the paper, the role played by the Abadie constraint qualification in relation to calmness is clarified, and illustrated by different examples. We point out that this approach has the virtue of tackling the calmness property exclusively in terms of the system’s data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disponible en Github: https://github.com/adririquelme/DSE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we provide the proof of a practical point-wise characterization of the set RP defined by the closure set of the real projections of the zeros of an exponential polynomial P(z) = Σn j=1 cjewjz with real frequencies wj linearly independent over the rationals. As a consequence, we give a complete description of the set RP and prove its invariance with respect to the moduli of the c′ js, which allows us to determine exactly the gaps of RP and the extremes of the critical interval of P(z) by solving inequations with positive real numbers. Finally, we analyse the converse of this result of invariance.