4 resultados para Allosteric modulator
em Universidad de Alicante
Resumo:
Chitosan is a biopolymer with a wide range of applications. The use of chitosan in clinical medicine to control infections by fungal pathogens such as Candida spp. is one of its most promising applications in view of the reduced number of antifungals available. Chitosan increases intracellular oxidative stress, then permeabilizes the plasma membrane of sensitive filamentous fungus Neurospora crassa and yeast. Transcriptomics reveals plasma membrane homeostasis and oxidative metabolism genes as key players in the response of fungi to chitosan. A lipase and a monosaccharide transporter, both inner plasma membrane proteins, and a glutathione transferase are main chitosan targets in N. crassa. Biocontrol fungi such as Pochonia chlamydosporia have a low content of polyunsaturated free fatty acids in their plasma membranes and are resistant to chitosan. Genome sequencing of P. chlamydosporia reveals a wide gene machinery to degrade and assimilate chitosan. Chitosan increases P. chlamydosporia sporulation and enhances parasitism of plant parasitic nematodes by the fungus. Omics studies allow understanding the mode of action of chitosan and help its development as an antifungal and gene modulator.
Resumo:
Lidocaine is a commonly used local anaesthetic that, besides blocking voltage-dependent Na+ channels, has multiple inhibitory effects on muscle-type nicotinic acetylcholine (ACh) receptors (nAChRs). In the present study, we have investigated the effects of lidocaine on ACh-elicited currents (IAChs) from cultured mouse superior cervical ganglion (SCG) neurons, which mainly express heteromeric α3β4 nAChRs. Neurons were voltage-clamped by using the perforated-patch method and IAChs were elicited by fast application of ACh (100-300 μM), either alone or in presence of lidocaine at different concentrations. IAChs were reversibly blocked by lidocaine in a concentration-dependent way (IC50 = 41 μM; nH close to 1) and the inhibition was, at least partially, voltage-dependent, indicating an open-channel blockade. Besides, lidocaine blocked resting (closed) nAChRs, as evidenced by the increased inhibition caused by a 12 s lidocaine application just before its co-application with the agonist, and also enhanced IAChs desensitisation, at concentrations close to the IC50. These results indicate that lidocaine has diverse inhibitory actions on neuronal heteromeric nAChRs resembling those previously reported for Torpedo (muscle-type) nAChRs ( Alberola-Die et al., 2011). The similarity of lidocaine actions on different subtypes of heteromeric nAChRs differs with the specific effects of other compounds, restricted to particular subtypes of nAChRs.
Resumo:
Lidocaine bears in its structure both an aromatic ring and a terminal amine, which can be protonated at physiological pH, linked by an amide group. Since lidocaine causes multiple inhibitory actions on nicotinic acetylcholine receptors (nAChRs), this work was aimed to determine the inhibitory effects of diethylamine (DEA), a small molecule resembling the hydrophilic moiety of lidocaine, on Torpedo marmorata nAChRs microtransplanted to Xenopus oocytes. Similarly to lidocaine, DEA reversibly blocked acetylcholine-elicited currents (IACh) in a dose-dependent manner (IC50 close to 70 μM), but unlike lidocaine, DEA did not affect IACh desensitization. IACh inhibition by DEA was more pronounced at negative potentials, suggesting an open-channel blockade of nAChRs, although roughly 30% inhibition persisted at positive potentials, indicating additional binding sites outside the pore. DEA block of nAChRs in the resting state (closed channel) was confirmed by the enhanced IACh inhibition when pre-applying DEA before its co-application with ACh, as compared with solely DEA and ACh co-application. Virtual docking assays provide a plausible explanation to the experimental observations in terms of the involvement of different sets of drug binding sites. So, at the nAChR transmembrane (TM) domain, DEA and lidocaine shared binding sites within the channel pore, giving support to their open-channel blockade; besides, lidocaine, but not DEA, interacted with residues at cavities among the M1, M2, M3, and M4 segments of each subunit and also at intersubunit crevices. At the extracellular (EC) domain, DEA and lidocaine binding sites were broadly distributed, which aids to explain the closed channel blockade observed. Interestingly, some DEA clusters were located at the α-γ interphase of the EC domain, in a cavity near the orthosteric binding site pocket; by contrast, lidocaine contacted with all α-subunit loops conforming the ACh binding site, both in α-γ and α-δ and interphases, likely because of its larger size. Together, these results indicate that DEA mimics some, but not all, inhibitory actions of lidocaine on nAChRs and that even this small polar molecule acts by different mechanisms on this receptor. The presented results contribute to a better understanding of the structural determinants of nAChR modulation.
Resumo:
Introducción. El desarrollo del empoderamiento implica la posesión de múltiples habilidades que ayudan a las personas a afrontar la adversidad, por lo que el desarrollo de esta capacidad puede ser prioritario entre estas personas para mejorar su calidad de vida. Objetivos. Los objetivos del estudio analizan la capacidad de empoderamiento de un grupo de jóvenes con discapacidad en función de la tipología y etapa en la que se adquiere la discapacidad. Metodología. Participaron 98 jóvenes con diferentes tipos de discapacidad (física, intelectual, visual y auditiva). Contestaron la versión española adaptada de la Escala de Rogers, Chamberlin, Ellison y Crean (1997) diseñada para medir esta capacidad. Resultados. Los análisis indicaron altos niveles de esta capacidad entre los jóvenes observándose en mayor medida en las personas con discapacidad sobrevenida, así como en la discapacidad motora y visual. Conclusiones. Esto nos sugiere que esta capacidad puede variar y evolucionar, de ahí la importancia de fomentarla en programas de intervención-acción.